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Preface

Glider pilots need lift for staying airborne. This lift is provided by vertical atmospheric motion
from various meteorological phenomena including thermals and mountain waves. While the latter
source of lift is treated in this booklet, we will not provide practical information about wave
soaring, as this is treated in books written by glider pilots. Instead, it is the intention of this text
to provide non specialists with some basic physical principles of atmospheric gravity waves.

The idea for this topic arose from the author’s participation at yearly meetings of a group
of glider pilots who exchange their experiences of wave soaring over small mountainous areas
in Northern Germany. The author is not a pilot himself, but a meteorologist with a teaching
position at the Leibniz University of Hannover, Germany. During these meetings, he tried to
provide some explanations on the physical principles behind the formation of atmospheric gravity
waves. It turned out that glider pilots know much more about mountain waves (a special class
of gravity waves very favorable for wave soaring) than many meteorologists, but wanted further
to understand the physical reasons for wave formation.

Initially, it was planned to provide a popular treatment of gravity waves without mathema-
tical formulas. But during the early stages of writing, it turned out that some formal treatment
of wave physics is necessary in order to understand the wave properties as observed by glider
pilots. These wave principles are provided in Chapters 2 – 6. Gravity waves suitable for soaring
flight are presented in Chapters 7 – 10, which contain little formal treatment. The booklet begins
with an introduction to soaring and mountain waves in Chapter 1 and ends with a short history
of soaring flight in Chapter 11. The material is provided for free to everyone interested in wave
soaring or in atmospheric gravity waves in general. However, the reader has to take into account,
that a professional layout as that provided by publishers is lacking.

Acknowledgements: This text could not have been written without various information provided
by glider pilots. Firstly, I would like to mention Jörg Dummann, who is not only organizing the
yearly meetings of wave soaring enthusiasts and runs the website www.schwerewelle.de as a
forum for flight reports and other wave information, but has also encouraged me to write this
text. Various glider pilots from this wave soaring community provided me with information and
pictures, especially Karl-Heinz Dannhauer, Andreas Gidde, Rene Heise, Hendrik Hoeth, Carsten
Lindemann and Christoph Maul. My former students Christoph Knigge and Niklas Kubitschke
allowed me to use figures from their Diploma and PhD Theses. Richard Foreman helped with
the language editing. And last but not least, Lennart Böske, student of meteorology, converted
my hand-written equations and formulas and my hand-drawn figures into a nearly professional
final layout.

Copyright notice: Any part of the text or the figures might be used in other publications, but
the author asks for an acknowledgment of the source. This permit does not include those figures
where the source is quoted in the figure caption.





1 Introduction 9

1 Introduction

1.1 Soaring flight and meteorology

It is our experience that under the influence of gravity all bodies will fall. Some details on the
motion of mass particles due to gravity forces will be given in Section 2.2. Let us consider, for
example, a sphere with a diameter of 1m and the weight of a modern sailplane of 250 kg. If we
release this sphere from a height of 1000m above ground, it will take only 14 seconds to hit the
surface with a final speed of 140m/s or 500 km/h if we neglect the influence of friction against
the surrounding air. If friction is taken into account, the sphere will fall more slowly, but the
terminal velocity will still be in the range of 100m/s or 360 km/h. Sailplanes have sinking rates
of about 1m/s or even less. Hence, it will take about 1000 seconds or 16 minutes for a plane
to reach the landing site from an initial altitude of 1000m in still air. From these numbers, it
follows that some vertical atmospheric motion will be necessary in order to keep gliders aloft
for a longer time and that motion should exceed the sink speed of the gliders. Hence, we are
looking for atmospheric motion with upward vertical velocities of more than 1 - 2 m/s.

The WMO monograph, Weather and Soaring Flight (OSTIV, 2009), lists various meteo-
rological phenomena favorable for soaring (see Figure 1.1). In general, vertical motion can be
divided into that induced by heating of the surface (thermal convection) and the lift due to flow
convergence or orography, including ridge lift and mountain waves. The latter will be discussed
shortly in the next section. These sources for atmospheric lift do not only differ with respect to

Fig. 1.1: Various meteorological phenomena to support soaring flight.
Source: OSTIV (2009), WMO-No. 1038
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Fig. 1.2: Temporal and spatial scales of atmospheric motion useful for soaring flight.
Source: OSTIV (2009), WMO-No. 1038

their physical origin, but also with respect to their spatial and temporal time scales as shown
in Figure 1.2. The various meteorological phenomena to support soaring flight are also discus-
sed in any book on soaring. Here we mention only the monographs by Reichmann (1988) and
Eckey (2012) and the special books on thermal soaring (Hertenstein, 2005) and wave soaring
(Hertenstein, 2011).

1.2 Mountain waves

Mountain waves are a special class of atmospheric gravity wave found in the lee of mountains.
A schematic diagram of mountain waves in the lee of the Hruby Jesenik ridge in the Czech
Republic is shown in Figure 1.3. Similar schematics of mountain waves can be also found in
any book on soaring flight. Shown is a cross section of the wave system which would extend
over several kilometres in the direction parallel to the mountain ridge. The blue lines indicate
pathways of air parcels approaching the ridge from the left (the luff side). Areas of upward
wave motion are indicated by red crosses and symbolic sail planes. The special phenomenon of
rotors beneath the wave crests near the ground is also indicated, with areas of very turbulent
air motion indicated by cumulus clouds. The cumulus clouds can be contrasted with so-called
lenticularis clouds shown in the upper part of the waves, which are indicators of smooth quasi
laminar air flow. The wavelength in this particular case is between 4 and 8 km but will vary for
other mountain areas. The mountain wave system extends parallel to the mountain ridge as can
be seen in many satellite cloud pictures, for example, in Figure 1.4.
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Importantly, unless the updrafts are thermals, the up and downdraft areas of the waves are
practically fixed in space over long time scales (hours or even days). Hence, glider pilots can
use these quasi-stationary areas of upward vertical air motion to balance or even counteract the
sink rate of their planes. In fact, many world records for soaring flight have been obtained in
mountain wave systems. We might mention the long distance record of 3009 km or the altitude
record of 15460m both flown in the lee of the Andes wave system. The PERLAN project (see
www.perlanproject.org) even plans to reach altitudes of 100,000 ft or 30 km by using lee waves
reaching out into the stratosphere.

Earlier record flights with respect to distance or altitude have also been flown in other high
mountain areas like the Sierra Nevada in the USA, the Alps of Southern New Zealand or the
European Alps. Some of these flights are documented in the monographs by Whelan (2000) and
Delore and Dew (2005).

The Mountain Wave Project of the OSTIV (www.mountain-wave-project.com) collects
world wide data on mountain waves and rotors in order to support the preparation of wave
soaring. Not only high mountain ranges give rise to wave flights, but small mountain areas with
heights less than 1000m (see, e.g., Fig. 1.3) can also have lee wave systems supporting long
distance and high altitude flights. We might mention the altitude record of about 10 km above
the Southern Uplands of Scotland, where ridge heights are almost 1000m. Altitudes of about
7 km have been reached in wave systems in low mountain areas of Germany, where some ridges
are only 200 - 300m high (Dummann, 2009). Various flights in the wave system of the Harz
Mountains in Northern Germany are described by Dannhauer (2011).

Fig. 1.3: Schematic of the lee waves in the area of the Hruby ridge near Jesenik, Czech Republic. The
height of the mountain ridge is about 1000m above the surrounding terrain.
Source: Aeroclub Jesenik
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These wave flights tell us that high mountain areas are not necessary to induce atmospheric
wave systems to be used for soaring flight. Hence, wave flights have been performed by hundreds
of glider pilots during thousands of hours by using lower mountain ranges nearby their home.
In Germany, those pilots are organized by the so-called “Mittelgebirgsleewelle (lee waves in
low mountain ranges)” project (Dummann, 2009). Wave flights are reported on the website
“www.schwerewelle.de” and a yearly meeting on wave soaring takes place. Attendance of these
meetings shows that glider pilots have a very good understanding of all practical aspects of
wave flight including the (dangerous) phenomenon of rotors, which are regularly connected to
the mountain wave system. However, many pilots would also like to understand the physical
mechanisms behind mountain waves. There are of course excellent monographs on atmospheric
gravity waves including mountain waves like those by Nappo (2012) and Sutherland (2010), but
these are intended for graduate students or atmospheric scientists as they require fundamental
understanding of fluid mechanics and calculus. Special books on wave flight for soaring pilots by
Dannhauer (2011), Hertenstein (2011) or Palmer (2004) are very instructive but are not aimed
at explaining mountain wave physics. Hence, it is the intention of these notes to provide some
basic physical principles behind atmospheric gravity waves, including mountain waves.

Fig. 1.4: Satellite picture of mountain waves around Ireland and the British Isles. The waves are indicated
by bands of cumulus clouds orientated approximately parallel to the mountain ridges.
Source: EUMETSAT
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2 Forces and motion

2.1 Some formalities

In order to understand wave motion in the atmosphere, we have to consider the basic physical
laws governing this motion. In the following, we define a fluid particle (given the subscript “p”)
by its mass mp, volume Vp and density ρp(= mp/Vp). The motion of this particle is described
by the second law of Newton (Isaac Newton, 1642 - 1727, one of the great scientists in history)
which can be stated in words as

mass times acceleration equals the sum of the forces applied to the particle

In the form of a physical equation, this can be written as:

mpa =
∑

Fi , i = 1, 2, 3, ... (2.1)

Here, a denotes the particle acceleration and Fi the forces. The acceleration is the temporal
change of the particle velocity. The forces acting on fluid particles in the atmosphere (or in any
fluid) are gravity, pressure and frictional forces. We will introduce these forces more formally in
the next sections.

In order to discuss forces and accelerations, we have to introduce a coordinate system which
provides the direction in which forces and accelerations are acting. This is usually done with
a simple rectangular Cartesian coordinate system as shown in Figure 2.1. Here, the horizontal
coordinates, which are supposed to be parallel to the earth’s surface, are denoted by x and y,
while the vertical coordinate is denoted by z. For later discussions, we also need the definition
of differences in fluid properties. These will be denoted by “d” and can be interpreted as follows:
let the density within a fluid at two positions x1 and x2 in the x-direction be named ρ(x1) and
ρ(x2), then the difference between these densities ρ(x2) − ρ(x1) will be denoted by “dρ”. The
differences between the positions x1 and x2 will be denoted by dx = x2−x1 (see Fig. 2.2). If we
are interested in the temporal change of a fluid property, say the change of density, we have to
take the difference ρ(t2)− ρ(t1) at times t1 and t2. The change in time will then be defined by
“dt” = t2 − t1 (see Fig. 2.2).

G

x

y

z

Fig. 2.1: The coordinate system
and the direction of the force due
to gravity.
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x

ρ t

ρ1

ρ2

dρ

x1 x2

dx

t1 t2

dt

ρ(x, t)

Fig. 2.2: Change in a fluid property (he-
re: density dρ) in space (dx) or time (dt).

Let us give an example: As the velocity of a fluid particle is defined as the temporal change of
its space coordinates with time, we have for the horizontal velocity component u:

u = dx

dt
= (x(t2)− x(t1))

(t2 − t1) , (2.2)

and for the vertical velocity component w:

w = dz

dt
= (z(t2)− z(t1))

(t2 − t1) . (2.3)

A change in a fluid property in space will be called a “gradient”. For example, if the fluid density
changes in the vertical (as in stratified fluids, to be discussed later) we have

dρ

dz
= (ρ(z2)− ρ(z1))

(z2 − z1) . (2.4)

2.2 Gravity force

The gravity force acts on all bodies on earth. It is directed toward the earth’s center or perpen-
dicular to the earth’s surface as displayed in Figure 2.1. Formally, this can be written as

G = −mpg, (2.5)

where g is the gravitational constant with a value of about 9.81m/s2, and has the dimensions
of an acceleration. If only the gravity force is acting on a particle, Newton’s law gives

mp
dw

dt
= −mpg, (2.6)

or dividing by the particle mass mp:
dw

dt
= −g. (2.7)

The last version is the formal description of the well known statement by Galileo Galilei (1564 -
1642) that all bodies fall at equal rates. This is of course only true if no other forces are acting
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on the fluid particles. Everyday experience shows us that a stone falls faster than a feather or
a leaf and sailplanes may not fall at all toward the earth’s surface. This is due to pressure and
friction forces acting on the body which cannot be neglected in real applications of Newton’s
law to falling bodies. For our purposes to explain atmospheric gravity waves, we can to a first
approximation neglect frictional forces. Hence, as the next step we will investigate the influence
of pressure forces on falling bodies.

With respect to our goal of explaining gravity waves, we might consider at this stage the
possibility of harmonic oscillations due to gravity. These are possible if there is a compensating
force which counteracts the falling of a mass. Two well known examples will be given: the
pendulum and a sphere in a bowl presented schematically in Figure 2.3. For the case of the
pendulum, the mass is fixed to a string of length l which is fixed at some height z. At rest, gravity
is equally balanced by the tension in the string. If the mass is deflected by an angle ϕ from its
equilibrium position, which is straight down, only the component of gravity parallel to the string
can compensate the string tension: F = mg cos(ϕ). The other component, Fs = mg sin(ϕ) has
no opposing force, hence Newton’s law for the acceleration in the s-direction can be written as:

m
dus

dt
= mg sin(ϕ), (2.8)

where us = ds/dt. For small angles (ϕ < 20◦) we can write sin(ϕ) ≈ s/l. Hence equation 2.8 can
be approximated by

d2s

dt2
+ g

l
s = 0. (2.9)

This is the well known pendulum equation which has the solution

s(t) = so cos(ωt), (2.10)

where ω =
√
g/l is the pendulum frequency and so is the initial position of the pendulum.

A similar argument leads to the same equation for a sphere moving in a circular bowl with
radius l. Hence, a sphere deflected from its equilibrium position will also perform a harmonic
oscillation according to eq. 2.10.

m

l
s

g sinϕ

g

×
ϕ

m s

Fig. 2.3: Pathways (s) followed by a mass m under the influence of gravity. Left: a pendulum of length
l. Right: sphere in a bowl.
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2.3 Pressure Forces

Forces applied in the normal direction to the surface of masses are called pressure forces and will
be denoted by Fp in the following. For example, if you lean against a wall, you exert a pressure
force on the wall, but neither the wall nor yourself will move due to the principle “action =
reaction” and hence the wall also exerts a pressure force of opposite sign on you. The more
general case of pressure forces acting on a mass particle is illustrated in Figure 2.4 where, for
simplicity, only two surfaces of a cube are shown. If we want to know whether the mass will
be accelerated by pressure forces, we have to take the sum of the forces acting on the x and z
surfaces. In Figure 2.4, the forces in the vertical direction are assumed to be equal but of opposite
sign so that there will be no motion in the vertical direction. In the horizontal direction, the
force in the positive x-direction is assumed to be larger than the opposing pressure force in the
negative x-direction. Hence, according to Newton’s law, the particle will be accelerated in the
positive x-direction as indicated in the figure.

The force per unit surface area is called pressure and is usually denoted by the symbol “p”.
As forces are expressed in Newtons (N), pressure has the units of Newtons per square meter
(N/m2) which is called a “Pascal (Pa)”. It can be shown that the acceleration of a body with
massm due to pressure forces in each spatial direction can be written using pressure p as variable
by

m
du

dt
= −V dp

dx
, m

dw

dt
= −V dp

dz
, (2.11)

where V is the volume of the body and dp/dx and dp/dz are the pressure gradients across the
body’s diameter. We might remark that pressure forces are also called volume forces as they
act only on the surface of fluid particles like friction forces, which are not treated here. This is
in contrast to gravity forces, which do not depend on the volume of particles but only on their
mass.

z

x

Fpx1
Fpx2

Fpz2

Fpz1

m

motion
Fig. 2.4: Action of pressure forces Fp on a body.
The resulting direction of motion is indicated by
the arrow at the bottom.
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2.4 Hydrostatic Pressure

Next we consider the balance between gravity and the pressure force as is illustrated in Figure
2.5. On the left part of the figure, a cube of mass m and volume V = ah, where a is the surface
area and h is the height, is placed on a solid surface so that the cube cannot move downward
due to gravity because the wall exerts an opposing pressure force on it. At the surface, gravity
and pressure forces are in equilibrium, which can be expressed as

G = Fp or mg = p0a, (2.12)

where p0 is the pressure at the wall. If we replace the mass m by the density ρ and the volume
V by surface area, a times height h, we have

ρahg = p0a or p0 = ρgh. (2.13)

This pressure resulting from the gravity force acting on a solid horizontal surface is called the
static pressure. When the mass above the wall is a fluid or a gas, it is called the hydrostatic
pressure.
Let us give an example: if a lake has a water depth of 10 m and if we neglect air pressure acting
on the water, the hydrostatic pressure at the bottom of the lake will be p = 1000 kg/m3×10m/s2

× 10m = 100000N/m2 = 100000Pa = 1000 hPa, which is equal to the air pressure we observe
at the earth’s surface.

The above formula provides the pressure at a solid horizontal wall exerted by a body of
height h due to the action of gravity. If we consider a fluid (water) or a gas (the atmosphere), we
might be also interested in the variation of pressure in the vertical coordinate. Let us consider
the situation on the right hand side of Figure 2.5, where a fluid column of height H is shown
and we are interested in the pressure at an intermediate height h.

z

p0

a

hG

Fp

h

H

p1

Fig. 2.5: Left part: forces acting on a cube of mass m resting on a surface. G = gravity force, Fp =
pressure force. Right part: pressure distribution in a fluid column of height H.
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According to the derivation above, the pressure at height h (denoted by p1) is p1 = ρg(H−h).
At the surface, the pressure (denoted by p0) is p0 = ρgH. Hence, for the pressure difference
between z = h and z = 0 we have

p1 − p0 = −ρgh = −ρg(z1 − z0). (2.14)

Here, we have replaced h by the more general height difference, z1− z0. If we apply this relation
to more arbitrary differences, dp and dz, we have

dp

dz
= −gρ. (2.15)

This is the so-called hydrostatic pressure law which states that, under the influence of gravity,
the pressure in a fluid at rest decreases with height. The density of the fluid need not to be
constant as in the case of water, but can vary with height as in the case of the atmosphere. The
height variation of pressure, p(z), resulting from integrating the hydrostatic law is as follows. For
constant density, pressure decreases linearly with height (or for lakes and oceans it increases with
depth), whereas for the atmosphere where density decreases with height, the pressure follows an
exponential decay shown in Figure 2.6.

An example of the pressure distribution for the ICAO standard atmosphere is given in Figure
2.6. It can be seen that for each height, there is only one pressure value. Hence, pressure and
height are unequivocally related to each other and therefore height can be also deduced from
the measurement of static pressure. This fact has long been known and is the basis of altitude
measurements in aviation (determination of the altitude of airplanes from GPS is of course the
modern method).

p (hPa)

z

100 1000
0

5 m

10 m

p(z)

p (hPa)

z

100 1000
0

5 km

10 km

p(z)

Fig. 2.6: Vertical variation of hydrostatic pressure in a lake (left) and in the atmosphere (right). The
surface pressure in both cases is 1000 hPa.
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2.5 Dynamic pressure

The relation between fluid acceleration and the pressure gradient given in Section 2.3 can also be
inverted in the sense of Newton’s law, “action = reaction”. Not only a pressure gradient leads to
fluid particle acceleration but also acceleration (or deceleration) in the fluid induces a pressure
force. The resulting pressure is called the “dynamic pressure” and will be denoted by pd.

Let us consider the following example: if a water jet from your garden hose spurts against
a wall, the ejected water will be decelerated while impinging on the wall because it cannot
penetrate a solid surface. There will be a pressure force acting on the wall exerted from the
impinging water jet, which you can feel yourself if you spurt the jet against your hand.

The relation between dynamic pressure pd and the fluid velocity u is given by the famous
Bernoulli equation, named after the Swiss physicist D. Bernoulli (1700-1782), which can be
expressed in its simple form as

pd + ρ
u2

2 = constant. (2.16)

The consequences of the Bernoulli law for fluid motion are illustrated in Figure 2.7, where velocity
and pressure variation for the flow through a constriction in a channel is shown. As the mass
flux through any cross section of the channel must be constant, the fluid accelerates through
the constriction where the maximum velocity is reached and is accompanied by a reduction
in dynamic pressure. The Bernoulli principle can, in practice, be found on any airplane in the
so-called Pitot-tube, which measures the aircraft speed relative to the surrounding air based on
the relation given above.

Actually, dynamic pressure forces are very important in fluids as they communicate the
movement of fluid particles relative to solid walls (e.g. bending pipes) or among themselves
throughout the fluid volume. In aviation, for example, these pressure forces lead to aerodynamic
lift of airfoils and hence make flight possible.

2.6 Mass conservation and continuity principle

In the previous chapters, we have presented the laws for fluid motion which are based on Newton’s
principle, but these are not sufficient to describe all fluid physics. As an additional restriction,
we have to follow the law of mass conservation which can be stated for the mass mp for any

P0 P < P0

Fig. 2.7: Velocity and pressure distribution in a constriction of a fluid channel according to Bernoulli’s
equation. The arrow length is proportional to the fluid velocity. P0 denotes the upstream pressure.
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particle as mp = constant. If we observe the particle mass during the course of time, this can
be written as

dmp
dt

= 0 (2.17)

and is called the mass conservation law. It does not mean that the particle density cannot change
since mass can also be defined as the product of particle volume Vp and density ρp (mp = ρpVp).
Hence, if the particle volume is changed due to some external forces acting on the particle surface
(see Figure 2.8), the density also changes, but the product of the two remains constant. If the
fluid particle density can be changed, the fluid is called “compressible” and the most prominent
compressible fluid is air.

Liquids such as water are barely compressible under normal circumstances and in many
applications in fluid mechanics are assumed to be incompressible. This means that the density
or volume of fluid particles remains constant with time and can be formally written as

dVp
dt

= 0, dρp
dt

= 0 (2.18)

and is called the incompressibility condition in the literature. This does not mean however that
the density of the entire fluid is constant, but only that the density of individual fluid particles
is constant with time. Cases of incompressible fluids with density varying in space are presented
in Section 3.2 under the topic of stratified fluids.

The incompressibility condition states that the density or volume of fluid particles does not
change in time. This does not exclude the change of the outer shape of a fluid particle. An
example for this is given in Figure 2.8, where a square particle is stretched or squeezed by the
action of fluid motion resulting in a rectangular form with the same volume as the original square
form. To conserve particle volume (or density), the fluid motion is restricted by the so-called
continuity condition relating the horizontal velocity divergence defined by du/dx (a divergence

z

x

V0 V0

t = 0

V0

Fig. 2.8: Deformation of a fluid particle due to horizontal convergence/vertical divergence (left) and
due to horizontal divergence/vertical convergence (right) of the fluid motion. The shape of the particle
before deformation is shown in the middle. The case shown here is for incompressible fluids as the particle
volume V0 remains constant. The same scheme also applies for compressible fluids but with the additional
possibility of a variable particle volume.
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Fig. 2.9: Schematic of the circulation wi-
thin a field of cumulus clouds according to
the continuity principle.

with a negative sign is called convergence), and the vertical velocity divergence (or convergence)
defined by dw/dz through

du

dx
+ dw

dz
= 0. (2.19)

This relation is called the continuity equation and is one of the most often used approximations
in the field of fluid mechanics. It is even applied to atmospheric motion under some restrictions
and will be also used for the formal treatment of waves in this monograph.

The continuity principle for fluid motion is well known to glider pilots when they are per-
forming thermal flight as is illustrated in Figure 2.9 where the principal circulation in a field
of cumulus clouds is shown. The strong and narrow updrafts within the clouds have to be
compensated by weaker and wider downdrafts in the cloud-free areas.
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3 Archimedes’ principle and buoyancy forces

3.1 Archimedes forces

Let us now consider the behaviour of a solid particle submerged in a fluid at rest shown in Figure
3.1. In the following, we denote the properties of the particle by a subscript “p” and those of
the environmental fluid by a subscript “f”. The particle is held at its initial position by two
weightless strings exerting a net force FS. It is supposed that the density of the fluid ρf as well
as the density of the particle ρp are also kept constant. Applying Newton’s law for the situation
with a fixed position at time t = 0, one obtains:

ρp
dw

dt
= −ρpg −

dpf
dz

+ FS = 0. (3.1)

Here, pf is the static pressure of the fluid which can be calculated by the hydrostatic law as

dpf
dz

= −ρfg. (3.2)

Inserting this into Newton’s law yields for the equilibrium situation:

ρp
dw

dt
= −ρpg + ρfg = −g(ρp − ρf) + FS = 0. (3.3)

If we release the strings while keeping the particle in its initial position, the external force FS

vanishes and one has
ρp
dw

dt
= −g(ρp − ρf) (3.4)

or
dw

dt
= −g (ρp − ρf)

ρp
. (3.5)

This is the so-called Archimedes’ principle, named after Greek philosopher Archimedes
(around 200 BC), which says that a body of density ρp submerged into a fluid with density
ρf experiences a vertical force (also called buoyancy force) proportional to the density diffe-
rences multiplied by gravity g. The term on the right hand side of the first equation is a force
per unit volume and a force per unit mass appears on the right hand side in the second equation.
The latter version is most often used in applications of Archimedes’ principle to fluid motion
where this force is called the buoyancy force. This force is directed upward if the particle density

x

z ×

ρpρf

g

Fig. 3.1: A body with density ρp is submer-
ged in a fluid with density ρf. The body is fi-
xed in position by two weightless strings (das-
hed lines).
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ρpρf

g

ρpρf

Fig. 3.2: Acceleration of a particle with density ρp submerged in a fluid with density ρf due to Archimedes’
principle. Left: ρp < ρf, right: ρp > ρf.

is less than that of the surrounding fluid, and downward if the particle is denser than the fluid.
Hence, after the supporting strings in our configuration are removed at time t = 0, the following
motion will be observed (see Figure 3.2). If the particle is less dense than the fluid density, it
will be accelerated upward, if it more dense than the surrounding fluid it will move downward.
From everyday experience, we know if we throw a stone into the water, it will sink and if we
press a ball down into the water and release it, the ball will move up to the water surface. Glider
pilots experience Archimedes’ principle through rising warm air parcels (thermals).

In both cases, the solid particle submerged in a fluid will move away from its original position
as time proceeds. No oscillations around its initial position will be observed, as would be desired
to explain gravity waves in the atmosphere. In order to describe this behaviour, we have to
introduce the concept of a stratified fluid as will be done in the next section.

3.2 Stratified fluids

So far, we have considered for simplicity a so-called homogeneous fluid where the fluid density
ρf is constant in space and time. If the fluid density has different values in space, say ρf(x, y, z),
the fluid is called inhomogeneous, but if the fluid density varies only in the vertical direction,
i.e. ρf(z), a fluid is called stratified. In a stratified fluid, layers of constant density are oriented
in planes parallel to the horizontal coordinates as indicated in Figure 3.3 (in the following, we

x

z

ρ1

ρ2

ρ3

ρ4

ρ5
x

z

ρ5

ρ4

ρ3

ρ2

ρ1

Fig. 3.3: Layers of constant density in a stratified fluid. Left: stable stratification, right: unstable stra-
tification. The layer densities are arranged according to ρ1 < ρ2 < ρ3 < ρ4 < ρ5.
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show only the x coordinate). It can be shown for a fluid at rest, that the density surfaces have
to be horizontal (or perpendicular to the gravity force g) or otherwise horizontal motion would
be initiated.

The hydrostatic pressure law is also valid in the case of stratified fluids and can be written
now as

dpf
dz

= −gρf(z). (3.6)

The resulting vertical pressure distribution is no longer linear as with a constant density fluid,
but can have any form so long as the pressure decreases with increasing height.

In Figure 3.3, two situations are displayed. In one case, the fluid density decreases with
height, which is called stable stratification. In the other case, density is increasing with height,
which is called unstable stratification. The reason for this naming will become clear later on.

3.3 Archimedes’ principle in a stratified fluid

The principle of Archimedes as introduced in Section 3.1 is also valid for stratified fluids, but
now one has to consider the difference between the particle density and the fluid density at each
vertical level, ρp − ρf(z), in order to determine the buoyancy forces and the resulting vertical
acceleration. We first find an equilibrium level z where both densities are equal and there is no
buoyancy force so that the submerged particle will remain at this level as shown in Figure 3.4
for a particle with density ρ3.

Let us consider what happens if we lift the particle from its equilibrium level to a layer with
a different fluid density. For unstable stratification illustrated in Figure 3.4 (right side), lifting
the particle to the layer with ρ4 gives the Archimedes force A (or buoyancy force) on the particle
as

A = −g(ρ3 − ρ4) > 0. (3.7)

Hence, according to Newton’s law, the particle will be accelerated upward away from its initial
position. If the particle is shifted downward to the density level ρ2,

A = −g(ρ3 − ρ2) < 0 (3.8)

x

z

ρ1

ρ2

ρ3

ρ4

ρ5

ρ3

ρ3

ρ3

x

z

ρ5

ρ4

ρ3

ρ2

ρ1

ρ3

ρ3

ρ3

Fig. 3.4: The motion of a particle with density ρ3 after being brought to another fluid density level.
Left: stable stratification. Right: unstable stratification.
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and the particle will be accelerated downward away from its starting position. In any case,
the motion of the particle will be directed away from its level of equilibrium. This is called an
unstable equilibrium and hence this kind of stratification is also called unstable.

For stable stratification shown in Figure 3.4 (left side), lifting the particle to the density level
ρ2 gives

A = −g(ρ3 − ρ2) < 0 (3.9)

and the particle will be accelerated downward back to the direction of its equilibrium position.
If the particle is shifted down to the density level ρ4, then

A = −g(ρ3 − ρ4) > 0 (3.10)

and hence it will be accelerated upward in the direction of its equilibrium level. In any case,
the motion of the particle shifted initially away from its equilibrium position will be directed
back toward this level. This kind of equilibrium is called stable equilibrium and hence the fluid
stratification is also called stable.

3.4 Oscillations in a stratified fluid

For further discussion, we assume that the fluid density decreases linearly with height as dis-
played in Figure 3.5 and the equilibrium level is taken at z = 0 for convenience. For investigation
of the motion of a lifted particle, we assume that the particle density does not change in time,
i.e. dρp/dt = 0, thus using the incompressibility condition. Hence, in our diagram in Figure 3.5,
the path of the particle will be along the vertical line ρp = constant.

If we lift the particle to a small height z above its equilibrium level at z = 0, the density of
the surrounding fluid at this height will be given by

ρf(z) = ρf(0) +
(
dρf
dz

)
z, (3.11)

where at z = 0, ρf = ρp. Hence, the Archimedes force can de written as

A = −g(ρp − ρf(z)) = −g
(
ρp − ρf(0)− dρf

dz
z

)
= g

dρf
dz
z, (3.12)

and may be called Archimedes’ law for continuously stratified fluids.

ρ

z

ρp

h

h−

0

ρf

Fig. 3.5: Vertical profile of fluid density ρf

in a stably stratified fluid and pathway of
a particle with density ρp after leaving its
equilibrium position at z = 0.
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Newton’s second law, ρpdw/dt = A, then gives

dw

dt
= g

ρp

dρf
dz
z. (3.13)

In the following, we are interested in what kind of vertical motion the fluid particle will experience
once it is moved some small height z from its equilibrium position. As the vertical velocity w is
defined as the temporal change of the particle position z by w = dz/dt, then

d2z

dt2
= g

ρp

dρf
dz
z or (3.14)

d2z

dt2
+N2z = 0. (3.15)

This equation for the temporal change of the particle’s vertical position z has the same form
as the well known equations for a pendulum (see Section 2.2) with the solution of a harmonic
oscillator, where N2 denotes the square of the oscillation frequency. In our case, this frequency is
called the Brunt-Vaisala frequency, named after the British meteorologist Brunt and the Finish
meteorologist Vaisala (written Väisälä in the original language), denoted by N and defined as

N =
√
− g
ρf

dρf
dz
. (3.16)

Note that in a stably stratified fluid, dρf/dz < 0 (see Fig. 3.3) and hence N is a real number.
If we lift the particle initially to a small height h and release it from there, the solution of this
equation is (see any standard textbook on calculus or oscillations)

z(t) = h cos(Nt), (3.17)

where the oscillation period τ is given by τ = 2π/N . The vertical position of an oscillating
particle according to equation 3.17 is sketched in 3.6, with details on the cosine function (cos)
provided in Appendix AIII. It is important to note that vertical oscillations of fluid particles
in a stably stratified fluid can be achieved by the action of gravity just as for the mechanical
pendulum discussed in Section 2.2.

z
0 2π 4π 6π

Nt

0 1 2 3

t
τ

h

0

−h

Fig. 3.6: Vertical position of a particle
in a stably stratified fluid after being lif-
ted to the height h above its equilibri-
um position z = 0. The variation in time
according to equation 3.17 is shown for
three oscillation periods τ .
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3.5 Stratification and Archimedes’ principle in the atmosphere

So far we have investigated the behavior of a mass particle in a stratified fluid where we have
assumed that the particle density does not change in time (dρp/dt = 0). Now a gas like the
atmosphere is always compressible if we apply some external pressure forces. High pressure
results in a high particle density, low pressure in low density. As the static pressure of the
atmosphere decreases with height, a lifted air parcel becomes less dense than it was at its
original position and vice versa as shown in Figure 3.7. That does not necessarily mean that the
parcel becomes buoyant with respect to its surroundings since the environment is also subject to
air pressure decreasing with height. In meteorology, it is uncommon to consider parcel density
with respect to Archimedes’ law because density is hardly ever measured. Using the laws for
ideal gases, air density is related to temperature and pressure which are the standard variables
measured in meteorology. In fact, atmospheric stratification and buoyancy forces are defined with
respect to air temperature as outlined below. Air temperature, denoted by T , is usually measured
in degree Celsius (◦C) for meteorological applications. However, the laws of thermodynamics
require T to be defined in degree Kelvin (K), where T (K) = 273 (K)+T (◦C). However, differences
in air temperature have the same value, whether measured in (K) or (◦C), hence dT (K) =
dT (◦C).

Stratification in the atmosphere is related to the vertical change in air temperature by the
following rules which are derived in any textbook on meteorology. In neutral stratification,
corresponding to an unstratified fluid, the air temperature decreases by 1 K or 1 ◦C per 100m
height difference:

dT/dz = −1K/100m = −Γ (neutral stratification) (3.18)

The symbol Γ is the adiabatic lapse rate which means that if an air parcel is lifted under adia-
batic conditions (no heating or cooling due to external sources like radiation), its temperature
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z

z0 − h

z0

z0 + h

h

h

p < p0

p0

p > p0

V > V0

ρ < ρ0

V0
ρ0

V < V0
ρ > ρ0

Fig. 3.7: Volume and density
change of an air parcel lifted ver-
tically from its initial position at
z = z0 due to atmospheric pressure
p decreasing with height.
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Fig. 3.8: Variation of air temperature T (z) with height for different stratification. The temperature
gradient in the stable case corresponds to the ICAO standard atmosphere.

decreases by 1K/100m in the vertical direction. In a stratified atmosphere, the actual vertical
temperature gradient is either less or exceeds Γ according to the following rules:

stable stratification: dT/dz ≤ −Γ, (3.19)

unstable stratification: dT/dz ≥ −Γ. (3.20)

For example, consider the ICAO standard atmosphere defined by a temperature lapse rate of
dT/dz = −0.35K/100m in the lowest kilometres. This is less than −1K/100m and hence this
standard atmosphere is stably stratified as illustrated in Figure 3.8.

Archimedes’ principle could be expressed by the differences in air temperature between an air
parcel and its environment, but then one has to consider the adiabatic lapse rate Γ for the parcel
temperature. For this reason, another temperature has been introduced in meteorology which is
called potential temperature denoted by θ. The derivation of this temperature as based on the
first law of thermodynamics for adiabatic processes found in any textbook on meteorology, with
the result that

θ = T

(1000 hPa
p

)0.26
, (3.21)

where p is the pressure (in units hPa) of the air parcel under consideration. The potential
temperature has the property of being constant for an adiabatic process like mechanical lifting
of an air parcel giving

dθp
dt

= 0, (3.22)

which is equivalent to dρp/dt = 0 in an incompressible fluid. With this temperature, the Archi-
medes force A and the buoyancy force B can be expressed by

A = g(θp − θa), (3.23)
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θ(◦C)
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stableunstable
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θ(z) Fig. 3.9: Variation of potential
temperature θ(z) with height for dif-
ferent stratification. The tempera-
ture gradient in the stable case cor-
responds to the ICAO standard at-
mosphere.

B = g
(θp − θa)

θp
, (3.24)

where θa is the actual potential temperature of the surrounding air. The vertical gradient of
potential temperature can be related to the normal temperature lapse rate by

dθ

dz
= dT

dz
+ Γ. (3.25)

With this relation, the stratification of the atmosphere can also be defined by using potential
temperature θ instead of air temperature T :

Stable stratification: dθ

dz
> 0, (3.26)

Neutral stratification: dθ

dz
= 0, (3.27)

Unstable stratification: dθ

dz
< 0. (3.28)

These are illustrated in Figure 3.9.

Finally, the important Brunt-Vaisala frequency N can be defined for the atmosphere as

N =

√
g

θ

dθ

dz
=
√
g

T

(
dT

dz
+ Γ

)
. (3.29)

Tab. 3.1: Brunt-Vaisala frequency N and oscillation period τ in a stably stratified atmosphere for
different vertical gradients of air temperature T and potential temperature θ.

dT/dz dθ/dz N τ

(K/100m) (K/100m) (1/s) (s)
- 0.65 0.35 0.011 570
0.0 1.0 0.018 350
2.0 3.0 0.031 200
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For the ICAO standard atmosphere as before where dT/dz = −0.65K/100m, this leads to
dθ/dz = 0.35K/100m. The resulting Brunt-Vaisala frequency is N = 0.011 1/s which gives
an oscillation period τ (= 2π/N) of about 10 minutes and is the typical period for vertical
oscillations of air parcels in a stably stratified atmosphere. N and τ for other temperature
gradients are given in Table 3.1.
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4 Waves

4.1 General wave properties

So far, we have discussed oscillations of a fluid particle around its equilibrium position and the-
reby assumed that except for buoyancy, no other forces like friction or pressure forces are acting.
By neglecting these forces, no interaction of an oscillating fluid particle with the surrounding
fluid is possible. Allowing pressure forces to come into play makes the interaction of all fluid
particles in a stratified flow possible, such as organized interactions in the form of waves. We
may loosely define a wave as a periodic oscillation in time and space, with properties sketched in
Figure 4.1. For simplicity, we consider only a one-dimensional wave in the x-direction. A wave
in the atmosphere may be defined based on observed quantities like temperature, pressure or
wind speed and will appear as an oscillation superimposed on some background state, which in
Figure 4.1 is denoted by T0. For a variable denoted by T , a wave can be formally described by

T (x, t) = T0 + Ta sin
{2π
L

(x− ct) + ϕ

}
, (4.1)

where Ta is the wave amplitude and L the wavelength (the distance between two maxima or
minima). The wave moves with a phase speed c in the x-direction, while the phase ϕ provides
information on the offset against the origin of the coordinate system. The use of the sine function
is arbitrary as the cosine function could have also been used as both are related by a simple
phase shift, sin(x) = cos(x+ a). Hence, one can find both forms for describing harmonic waves
in the literature. Some details on sine and cosine functions are given in Appendix AIII.

In the following, we will omit for convenience the phase shift ϕ and the background T0 from
further discussion. We may first ask what an observer at a fixed position x = x0 would measure

x

T

T0

L

t
t+ ∆t

∆x = c∆t

Fig. 4.1: Schematic of a simple sine wave T (x, t) superimposed on a constant background state T0. The
full and dashed lines show the wave positions at different times t and t+ ∆t.
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when a wave moves past their position at x = x0? If

T (x0, t) = Ta sin
{2π
L
x0 −

2πc
L
t

}
(4.2)

or

T (x0, t) = Ta sin
{2π
L
x0 −

2π
τ
t

}
, (4.3)

where τ ist the wave period defined as

τ = L

c
, (4.4)

one would locally observe a harmonic oscillation of T with period τ .

It has been a matter of convenience to replace the terms 2π/L and 2π/τ in the wave defini-
tions by a so-called wave number k and an angular frequency ω:

k = 2π
L
, ω = 2π

τ
. (4.5)

With these definitions, a wave is usually described using the phase speed c by

T (x, t) = Ta sin {k(x− ct)} (4.6)

or frequency ω by

T (x, t) = Ta sin {kx− ωt)} . (4.7)

Here, the phase speed c is related to wave number k and frequency ω by

ω = ck. (4.8)

4.2 Transversal and longitudinal waves

Once the direction of wave propagation is known, one might be interested in which directions
the fluid properties like temperature, pressure or velocity are oscillating. We distinguish between
two types of waves: longitudinal and transversal waves, the properties of which are sketched in
Figure 4.2. In a longitudinal wave, the oscillations are in the plane of wave propagation (i.e.
in the direction of wave vector and phase speed). In a transversal wave, the oscillations are in
planes perpendicular to the wave propagation.

Well known examples of longitudinal waves are sound waves in the atmosphere or in any
other fluid. An example of transversal waves are pure gravity waves in fluids (see Section 5.1) or
electromagnetic waves in physics. Many waves are also of a mixed type which means that oscil-
lations occur in longitudinal and transversal directions. An example are water waves described
in Section 4.4.
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c

c

Fig. 4.2: Oscillations of fluid particles as indicated by thick arrows in a wave propagating in the c-
direction. Top: transversal wave, bottom: longitudinal wave.

4.3 Stationary and standing waves

Waves do not necessarily move with their phase speed c with respect to a fixed coordinate
system. If the phase lines (e.g., locations of maxima or minima) are fixed in space, we distinguish
stationary and standing waves. In a stationary wave, the frequency ω and phase speed c are
zero. If we use temperature T again as the observed fluid variable, this kind of wave is formally
described by

T (x) = Ta sin(kx) = Ta sin
(2π
L
x

)
. (4.9)

An observer at some fixed position, x = x0, would not observe any temporal change in the
temperature field in this example (see, e.g., Figure 5.9 in Section 5.4) as there is only a spatial
variation of temperature in the x-direction. These stationary waves are found as mountain waves
in the atmosphere and are of great importance for wave soaring (see Chapter 7).

In contrast to stationary waves, standing waves are characterized by fixed positions of ma-
xima, minima or zeros in the field of temperature (or any other wave variable) but with local
oscillations of the form:

T (x, t) = Ta(t) sin(kx) = Ta(t) sin
(2π
L
x

)
. (4.10)

The temporal variation of the amplitude Ta(t) is given by:

Ta(t) = Tmax sin(ωt) = Tmax sin
(2π
τ
t

)
. (4.11)

This wave behaviour is found in the vibrating strings of music instruments, where zero amplitudes
(nodes) are mechanically fixed at the end of the strings. Standing waves can be also found as
surface water waves in enclosed basins.

4.4 Water waves

One might wonder why a text on atmospheric gravity waves and soaring flight includes a chapter
on water waves. The reason is that only a few specialists and interested laymen, including glider
pilots, know about internal gravity waves in the atmosphere. Even less people are aware that
the same type of waves can be found in the interior of oceans and lakes. But nearly everybody
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has seen waves on the water surfaces of oceans, lakes, ponds or rivers. One could say that, from
the perspective of the general public, waves in fluids are at nearly all times referring to water
waves. Hence, we will start with these waves in order to get some feeling about the physical
mechanism of water waves and the related motion of water particles. Some examples of water
waves are shown in Figure 4.3.

While we are all aware of the wave motion on the water surface, we may also be interested
in the motion of water particles below the surface, as induced by the waves. The theory of water
waves is treated in any textbook on waves (e.g. Lighthill, 2001 or Sutherland, 2010), but most
often some deeper knowledge of calculus and fluid mechanics is necessary to follow these texts.
Here we try to understand the basic physics of water waves by first considering the situation in
a vertical plane as shown in Figure 4.4.

We denote the undisturbed water surface by z = 0 and the total depth by H. The water
waves are represented by a periodic disturbance of the water surface denoted by h(x, t), which
is assumed to be of the simple form

h(x, t) = h0 sin(kx− ωt) = h0 sin k(x− ct), (4.12)

where k = 2π/L is the wave number introduced in Section 4.1.

Now we imagine that at some time t = 0, we could fix the water surface h(x) to its sinusoidal
position. What kind of forces are acting on the water particles? Let us first consider the gravity
force and the vertical pressure force. As there is no initial motion, Newton’s law (see Section
2.1) requires that gravity and pressure forces must be in equilibrium, i.e.

dp

dz
= −gρ. (4.13)

This is valid for all water particles between the surface h and the bottom at z = −H. If we would
now release the wavy water surface from its initial position, this still holds, as no additional forces
are acting in the vertical direction. Hence, according to Newton’s law, there would be no fluid

Fig. 4.3: Examples of surface water waves. Left: ring waves due to the impact of rain drops. Right:
Typical irregular waves on an ocean surface.
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Fig. 4.4: Vertical cross section
through a water column with waves
at the air-water interface. The un-
disturbed water surface at z = 0 is
indicated by the dashed line. The
water bottom is located at z = −H.

acceleration in the vertical, but what we would observe is the sinking of the wave ridges and the
rising of the wave troughs. What is then the reason for this? To answer this question, we have
to consider the horizontal components of the forces, i.e. the pressure forces.

First, we calculate the pressure p itself from the hydrostatic law above. As the water density
ρ is constant, we obtain the simple linear pressure profile as already calculated in Section 2.4:

p(z) = gρ(h− z). (4.14)

As h is varying in the horizontal (x) direction, then

p(x, z) = gρ(h(x)− z). (4.15)

The horizontal pressure force is not the pressure itself but, as outlined in Section 2.3, the
horizontal pressure gradient (or the pressure difference) across a water particle. Hence, for the
horizontal acceleration, we have

du

dt
= −1

ρ

dp

dx
= −gdh

dx
. (4.16)

x

z

H L H L H L

Fig. 4.5: Distribution of hydrostatic pressure (H = high, L = low) and hydrostatic pressure forces
(arrows) in surface water waves.
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From Figure 4.5, we can see that the pressure gradient, and hence the pressure force, is
strongest on the flanks of the surface wave. The direction of the pressure forces and hence of
the initial accelerations are also depicted in Figure 4.5. Therefore, if we release the wavy surface
from its initial position, there will be some motion induced by horizontal pressure forces which
are directed from the wave crests to the wave troughs. As a consequence of mass continuity
(see Section 2.6), the amplitude of wave crests and wave troughs will decrease. Hence, particles
located at these positions will move down or up, but this vertical motion is not induced by
gravity but by dynamic pressure forces resulting from the horizontal accelerations in order to
satisfy the continuity principle. Therefore, we might say that the restoring force of water waves is
not induced by gravity directly, but the horizontal hydrostatic pressure force, which is of course
related directly to gravity by the hydrostatic law (see above).

Now we may ask if water waves are of the longitudinal or transversal type? As the waves
propagate in the horizontal direction (x direction in our examples), water particles would move
in the vertical (z direction) in case of transversal waves and in the horizontal in case of a
longitudinal wave. The derivation of particle motion as induced by surface water waves can be
found in any textbook on waves (see e.g. Lighthill, 2001 or Sutherland, 2010) with the result
shown in Figure 4.6.

In general, it has been found that particles move in elliptical orbits, where the relation of
the horizontal to vertical axis depends on the ratio of the wavelength L to the water depth H.
If the wavelength is much smaller than the water depth (say H/L = 10), the waves are called
“deep water” waves. If in contrast the water depth is much smaller than the wavelength (say
H/L = 0.1), the waves are called “shallow water” waves. In both cases, the water need not be
deep or shallow in any absolute sense, but only in relation to the wavelength.

The calculation of particle orbits (see e.g. Lighthill, 2001 or Sutherland, 2010) show that for
deep water waves, the particle orbits are circles with radius h0 at the water surface, decreasing
to zero at a depth of about z = −L as shown in the left part of Figure 4.6.

For shallow water waves, particle orbits are very flat ellipses with the horizontal axis much
larger than the vertical axis, as shown in the right part of Figure 4.6. The vertical excursion
is equal to h0 at the surface and vanishes at the water bottom at z = −H. The horizontal

Fig. 4.6: Orbits of particle motion below a wavy water surface. Left: deep water; middle: intermediate
water; right: shallow water.
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Fig. 4.7: A wave on the interface of a two layer fluid. Blue: heavy fluid.

excursion is constant throughout the whole water column and is related to the wave height h0

by xmax = h0L/(2πH).

As an example, we consider the motion of a cork on the water surface. If the wave height is
h0 = 0.5m, the cork (or a swimmer) moves up and down by at most an amplitude of 1m. In
the horizontal, it would be moved by 1m in the case of deep water waves and several meters
in the case of shallow water waves. The nearly horizontal motion for the case of shallow water
waves is also called sloshing and can be felt even at the water bottom. This brings us back to
the question of whether water waves are of a longitudinal or transversal type. As particle motion
includes both horizontal and vertical movement, water waves are a combination of transversal
and longitudinal wave motion. In the case of shallow water waves, the motion is mainly in the
horizontal direction and hence shallow water waves may be called longitudinal waves.

Finally, we present the results for the phase speed of water waves which are:

deep water waves: c =
√
g

k
=

√
gL

2π , (4.17)

shallow water waves: c =
√
gH. (4.18)

Hence, for deep water waves, the phase speed increases with increasing wavelength. These
waves are also called “dispersive waves”. For shallow water waves, the phase speed is independent
of the wavelength, but depends only on the water depth. The phase speed for shallow water waves
is also applicable to Tsunami waves and can, to a first approximation, be used to estimate their
propagation speed and hence time of arrival at distant coasts. For example, if we take the mean
depth of an ocean with 4000m, the resulting Tsunami phase speed would be about 200m/s or
720 km/h.

4.5 “Water waves” in the atmosphere

While this title may appear to be nonsense, it is not to be taken literally. Actually, the problem
of water waves is just a special case of so-called interfacial waves between two fluid layers of
different densities ρl and ρu, where the denser fluid occupies the lower layer (index l) and hence
the fluid is stably stratified. Take for example water as the lower layer and oil as the upper layer
(index u) as shown in Figure 4.7, with the corresponding density profile shown in Figure 4.8.
The interface between the two fluids can support waves with the same properties of water waves
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as described in Section 4.4. But now the hydrostatic pressure gradient, which acts as a restoring
force, has to be calculated with the so-called reduced gravity given by

g′ = − g
ρl

(ρu − ρl) (4.19)

instead of full gravity g. This must also be done in all resulting formula, such as for the phase
speed. For the atmosphere, two layers of constant potential temperature θ have to be considered
as shown in Figure 4.8. The reduced gravity is now given by

g′ = g

θl
(θu − θl) . (4.20)

From the perspective of the lower layer, the waves appear at the upper boundary of this layer,
hence these interfacial waves are also called “external gravity waves”, which is to be contrasted
with “internal gravity waves” to be discussed later.

The phase speeds of interfacial waves are now given by (see e.g. Sutherland, 2010):

c =
√
g′
L

2π for L� H, (4.21)

c =
√
g′H for L� H (4.22)

and correspond to the results for deep and shallow water waves given in Section 4.4.

Let us give the following examples for external gravity waves at an inversion as sketched
in Figure 4.8. A typical inversion height is H = 500m and a typical temperature jump is
θu − θl = 6 ◦C. If we consider a wavelength of L = 5000m, we have H/L = 0.1 and hence
can apply the phase speed formula for “shallow water” waves. The resulting phase speed is
c = 10m/s (36 km/h) which might be contrasted to the phase speed of Tsunami waves (720
km/h) on ocean surfaces as estimated in Section 4.4.

L

z

0

ρ(z)

∆ρ

θ(z)

∆θ
H

Fig. 4.8: Vertical variation of density ρ and poten-
tial temperature θ in a stably stratified two layer
fluid.
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5 Internal gravity waves

5.1 Waves in unbounded domains

In the following, we restrict the discussion to internal gravity waves to the atmosphere, although
the same results would be obtained for stratified lakes or oceans. Internal gravity waves can
be observed in a continuously stratified atmosphere characterized by a Brunt-Vaisala frequency
N(z). First, we consider the simple case of constant N , implying the potential temperature
increases linearly with height. If the atmosphere is at rest and is not restricted by lower and
upper boundaries (an ideal assumption), it can be shown (see, e.g., Nappo, 2012 or Sutherland,
2010) that the linearized wave equations (see Appendix AI, AII) have as possible solutions so-
called plane waves, where the temperature perturbations θ (or density perturbations) are given
by the wave relation

θ(x, z, t) = θ0 sin(kx+ lz − ωt). (5.1)

Here, k = 2π/Lx and l = 2π/Lz are the horizontal and vertical wave numbers with Lx and Lz

denoting horizontal and vertical wavelength.

The phase lines are orientated perpendicular to the wave number vector m which is oriented
with the angle α to the horizontal direction as shown schematically in Figure 5.1. The total
temperature field is composed of the basic state Θ(z) plus the wave perturbations θ(x, z, t). The
resulting temperature field for an instantaneous time t0 is shown in Figure 5.2.
The velocity components u, w and the pressure perturbations p are given by

w(x, z, t) = +w0 cos(kx+ lz − ωt), (5.2)

u(x, z, t) = −u0 cos(kx+ lz − ωt), (5.3)

p(x, z, t) = −p0 cos(kx+ lz − ωt). (5.4)

z

x

α

ml

k

Fig. 5.1: Scheme of a wave propagating with
an angle α to the horizontal (x) direction. Pro-
pagation wave number vector m and its com-
ponents, k and l are shown as thick arrows.
The phase lines are indicated by dashes.
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x

z

Fig. 5.2: Instantaneous field of potential temperature in a stably stratified atmosphere as induced by
internal gravity waves with tilted phase lines as in Fig. 5.1.

The velocity amplitudes are related through

u0 = l

k
w0 = Lx

Lz
w0. (5.5)

The wave frequency ω is related to the Brunt-Vaisala frequency N by

ω = N
k√

k2 + l2
= N

k

m
= N cosα. (5.6)

The above relations show that the internal gravity waves can in principle be oriented at any
angle to the horizontal axis or with respect to the direction of gravity. Due to relation 5.6, the
wave frequency is always less than the Brunt-Vaisala frequency N . For α = 0, the phase lines
are vertical and the maximum frequency ω = N is obtained.

Now we may ask what is the motion of air parcels within the gravity waves? As can be
seen from equations 5.2 and 5.3, vertical and horizontal velocity w and u are in phase but of
opposite sign. Hence, if a particle is moving downward it is also moving forward and if it is
moving upward, it also moves backward as illustrated in Figure 5.3. Consequently, air parcels
are moving along the phase lines perpendicular to the direction of wave propagation. Hence,
these kinds of idealized internal gravity waves in an unbounded domain with constant Brunt-
Vaisala frequency are a type of transversal waves. For α = 0, the phase lines are vertical and
the vertical wave number l is zero. It follows from 5.5 that the horizontal wave velocity u is also
zero, hence the fluid motion is purely in the vertical direction and all air columns are moving up
and down in a synchronous manner with the frequency ω = N like single particles in a stratified
environment as described in Section 3.4. This is a rather idealized situation which can occur only
in a hypothetical fluid domain without boundaries and with constant stratification. Otherwise,
the basic wave equations (see appendix) have solutions where the velocity amplitudes vary in the
vertical direction, with horizontal particle motion even when the phase lines are purely vertical
as will be illustrated in the next section.

In the atmosphere, the physical wave quantities like temperature, velocity and pressure can
be obtained by measurements, but as we usually identify waves with the motion of visible objects
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Fig. 5.3: Instantaneous field of particle
motion in an internal gravity wave pro-
pagating in the m-direction. Dotted lines:
no motion.

such as a water surface, it might be of interest to know the motion of fluid particles in gravity
waves. As shown in Section 2.1, the trajectories of particles in fluid motion are directly related to
the velocity components, u and w by dx/dt = u and dz/dt = w. In order to obtain the locations
of particles, one has to integrate the wave velocities in time. From equations 5.2 and 5.3, one
obtains

x(t) = +u0
ω

sin(kx+ lz − ωt) + c1 (5.7)

and

z(t) = −w0
ω

sin(kx+ lz − ωt) + c2, (5.8)

where c1 and c2 are integration constants. From these solutions, one can see that the particle
coordinates, x and z are related by

z = −xw0
u0

+ c3 = −xk
l

+ c3, (5.9)

where equation 5.5 has been used here. The variation of the vertical particle position as a function
of its horizontal position is just a line with negative slope k/l. Hence, the particle motion is along
a straight line inclined backward with angle α to the vertical axis as sketched in Fig. 5.4.

Now what is the maximum distance a particle would be shifted from its equilibrium position

z

z0 x

ω = N ω < N

∆z

∆x

α

Fig. 5.4: Particle orbits due to gravity waves in
unbounded domains with ω < N .
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at some position (x0, z0) due to the action of internal gravity waves? From 5.7 and 5.8, one gets

(z − z0)max = ∆z = w0
ω
, (x− x0)max = ∆x = u0

ω
= ∆z l

k
. (5.10)

Let us for example consider the vertical amplitude of the particle motion:

∆z = w0
ω

= w0
N cos(α) , (5.11)

where we have used the frequency relation 5.6. If we take the case with vertical phase lines
(α = 0) and hence pure vertical wave motion, then ∆z = w0/N . For typical values of w0 = 2m/s
and N = 0.011 as found in atmospheric gravity waves, the maximum vertical excursion is about
∆z = 220m, which would be a typical amplitude for vertical particle displacements. More details
on this aspect are provided in Section 7.5.

Finally, we may provide the phase speed for free internal gravity waves for the case of vertical
phase lines (α = 0), where the maximum angular frequency ω = N is possible. As the phase
speed c is related to frequency ω and wave number k by c = ω/k, one obtains

c = N

k
= NL

2π . (5.12)

As the phase speed depends on the wavelength L, internal gravity waves are also-called dispersive
waves just as in the case of deep water waves (see Section 4.4). For example, if we take as typical
values for gravity waves in the atmosphere as L = 10 km and N = 0.012, we get c = 20m/s or
36 kn. As this is in the range of typical wind speeds, it is an important point with respect to
stationary mountain waves to be discussed in Section 5.4.

5.2 Forced gravity waves

The simple plain waves described in the previous section are also called free gravity waves, as they
can exist in a stratified fluid with constant Brunt-Vaisala frequency N without external forces.
The only forces involved are the buoyancy force (3.24) and the pressure force (2.11). Under these
conditions, the wave frequency ω is always less than N (see 5.6) and the fluid particles oscillate
with this frequency once lifted from their equilibrium position. When we consider the case of
single particle oscillation described in Section 3.4, this is like a free pendulum. But from physics
we know that one could also force the pendulum with a frequency ω larger than its natural
oscillation frequency (for a stratified fluid, the natural frequency is N). Then one speaks about
forced oscillations and the phenomenon of resonance leading to larger oscillation amplitudes can
occur.

Here we may ask if similar phenomena can happen for internal gravity waves, i.e. for waves
with ω > N? Let us assume that a plane of constant potential temperature at some height
z = z0 is perturbed by

Θ(x, z0, t) = Θ0(z0) + θ0(z) sin(kx− ωt). (5.13)
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With this forcing and ω > N , the wave equations (see Appendix AII) do not permit periodic
(sine-like) solutions in the vertical direction as was for the case ω < N as described in Section
5.1. Instead, there must be a decrease in wave amplitude away from the position of wave forcing
at the reference position, z = z0. The solutions are now (see Nappo, 2012 or Sutherland, 2010):

θ(x, z, t) = θ0 exp(−m(z − z0)) sin(kx− ωt) z > z0, (5.14)

θ(x, z, t) = θ0 exp(+m(z − z0)) sin(kx− ωt) z < z0. (5.15)

The Brunt-Vaisala frequency N , wave frequency ω and horizontal wave number k(= 2π/L) are
now related through

m2 = k2
(

1− N2

ω2

)
, (5.16)

where m is the amplitude decay factor. The resulting field of potential temperature (or density)
including the background state Θ0(z) is shown schematically in Fig. 5.5.

The related wave velocity components u and w and the dynamic pressure p are given for
z < z0

w(x, z, t) = w0 exp(m(z − z0)) cos(kx− ωt), (5.17)

u(x, z, t) = −u0 exp(m(z − z0)) sin(kx− ωt), (5.18)

p(x, z, t) = −p0 exp(m(z − z0)) sin(kx− ωt). (5.19)

If we compare these wave fields with the case for plane waves with ω < N presented in Section
5.1, there are two distinctions: the phase lines are now oriented in the vertical (z) direction and
the amplitudes are decreasing with distance from the forcing height z = z0. Hence, these waves
are called damped or evanescent gravity waves. Also of interest is the fact that vertical and

z0

c

z

x

Fig. 5.5: Instantaneous field of potential
temperature for the case of a damped gra-
vity wave (ω < N). The forcing wave at mid
plane is shown as a solid line. A phase line is
shown as a vertical straight line.
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horizontal velocity components are now out of phase. Therefore, the pathways of fluid particles
are not inclined lines like in Fig. 5.4.

Particle positions, x and z, for the case of damped gravity waves can be obtained from the
wave velocities, u and w, as described in Section 5.1. The result for the lower part (z < z0) is

x(t) = u0
ω

exp(+m(z − z0)) cos(kx− ωt) + c1, (5.20)

z(t) = − w0
ω

exp(+m(z − z0)) sin(kx− ωt) + c2. (5.21)

The temporal change of horizontal and vertical particle positions are now out of phase and the
resulting orbits have the shape of ellipses as shown in Fig. 5.6 similar to water waves. As the
phase lines are oriented in the vertical (z) direction (see Fig. 5.5) but the particles can also
move in the direction of wave propagation (x-direction), these forced internal gravity waves
are a mixture of transversal and longitudinal waves with respect to fluid particle motion. The
maximum particle excursions are similar to the ones presented for plain gravity waves in Section
5.1:

∆z = w0
ω
, ∆x = u0

ω
= ∆zm

k
. (5.22)

These amplitudes can be regarded as the ellipse half axes of the particle orbits. They decay with
distance from the forcing position z0 with exp(m(z − z0)), z < z0, as shown schematically in
Fig. 5.6. By comparing these orbits with those in water waves shown in Fig. 4.6, one notices
that the longer axis of the elliptical orbits is in the vertical direction for internal gravity waves
and in the horizontal direction for water waves.

5.3 Gravity waves restricted by horizontal boundaries

The case of simple gravity waves in an unbounded fluid domain is of course not realistic con-
cerning application to the atmosphere, as the earth’s surface is a surface through which air

x

z

z0

c

Fig. 5.6: Sketch of particle orbits in a damped
gravity wave as shown in Fig. 5.5. The direction
of wave propagation is indicated by the arrow.
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parcels cannot penetrate. Hence, from a physical point of view, there can be no vertical particle
motion at the surface. As a consequence, it is not possible for the whole air column to oscillate
in the vertical direction with the same frequency and amplitude in the case described in the last
section. Let us, for example, consider the case of a stratified fluid with constant Brunt-Vaisala
frequency N bounded at top (z = H) and bottom (z = 0) by solid walls.
In this example, internal gravity waves are still possible, but these are now restricted by the in-
fluence of the upper and lower boundaries, where the vertical fluid velocity must be zero (w = 0).
The solutions of the wave equations for temperature, velocity and pressure are now given by the
following relations (e.g. Baines, 1995), where we have used the horizontal wavelength L instead
of wave number k (= 2π/L):

θ(x, z, t) = +θ0(z) cos
(2π
L
x− ωt

)
, (5.23)

w(x, z, t) = +w0(z) sin
(2π
L
x− ωt

)
, (5.24)

u(x, z, t) = −u0(z) cos
(2π
L
x− ωt

)
, (5.25)

p(x, z, t) = −p0(z) cos
(2π
L
x− ωt

)
. (5.26)

The phase lines are now oriented in the vertical (z) direction and the wave is moving in the
horizontal (x) direction. In contrast to free gravity waves (Section 5.1), vertical and horizontal
velocities w and u are now out of phase, which has a marked influence on the particle motion
(Fig. 5.8) The wave amplitudes for temperature and velocity are not constant any more, but
vary with height due to the presence of solid boundaries at z = 0 and z = H. The amplitude
functions are given by:

θ0(z) = θmax sin
(
πz

H

)
, (5.27)

w0(z) = wmax sin
(
πz

H

)
, (5.28)

u0(z) = umax cos
(
πz

H

)
, (5.29)

p0(z) = pmax cos
(
πz

H

)
, (5.30)

where the maximum amplitudes for horizontal and vertical wave velocities are related through

umax = wmax
L

2H . (5.31)

The wave field θ(x, z) superimposed on the basic state Θ(z) for temperature (or density) is
shown in Figure 5.7 at time t0. Particle orbits due to travelling waves are not along straight
lines as in the case of pure gravity waves (see Figure 5.3), but take more complicated forms as
sketched in Figure 5.8, which are similar to that in water waves (see Fig. 4.6).
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Fig. 5.7: Instantaneous field of potential
temperature in a stably stratified fluid boun-
ded by solid walls at z = 0 and z = H as
induced by an internal gravity wave. Phase
lines are oriented in the vertical (z) direction.

0

H

Fig. 5.8: Typical particle orbits as induced
by the gravity wave shown in Figure 5.7.

5.4 Gravity waves with a background wind

So far we have considered wave motion in a fluid at rest. This is an idealized case which can
be investigated, e.g., in laboratory experiments (see Figure 7.4). In geophysical applications
however, the fluid of interest (air in the atmosphere or water in lakes and oceans) is usually
moving (wind in the atmosphere, currents in the ocean). The background fluid motion has
considerable influence on the properties of gravity waves, which leads to interesting consequences
concerning waves usable for soaring flight and will be discussed later in Sections 6 and 7.

Let us here consider the most simple case of a background wind constant with height denoted
by U . In this case, all properties of wave motion as discussed so far remain the same if observed
from a coordinate system moving with the mean velocity U . If we fix the coordinate system
with respect to the earth’s surface (as is usually done), the wave is now moving with its absolute



5 Internal gravity waves 49

phase speed (denoted by Ca) defined as

Ca = U ± c. (5.32)

The sign attached to the normal phase speed c (also called intrinsic phase speed) indicates
whether the wave is moving in the direction of the mean flow (+) or against it (−). It is possible
that the absolute phase speed Ca is zero so that the wave is stationary with respect to an
observer at a fixed position x0 as shown in Figure 5.9. In this case, the phase speed c is opposite
to the direction of the background wind U but of the same magnitude (c = U). This kind of
stationary wave can be found in the lee of mountain ridges and will be of most importance for
soaring flight.

We might use the relation for stationary gravity waves to estimate the typical wavelength
L for these waves. Let us consider the simple case of waves with vertical phase lines discussed
at the end of Section 5.1. There we obtained for the intrinsic phase speed, c = N/k, where
k = 2π/L. For stationary waves we have the condition c = U , hence we obtain

Lstat = 2πU
N

. (5.33)

An example is if we take as typical atmospheric values, N = 0.012 and U = 10m/s, the
wavelength of stationary gravity waves would be Lstat ≈ 5 km. If the wind speed is doubled to
20m/s (36 kn), the wavelength is also doubled to ≈ 10 km. This relation between wind speed
and wavelength for stationary gravity waves will be of interest for the case of mountain lee waves
as discussed in Section 7.1.

The idealized case of constant wind speed U will be rarely found in the atmosphere as the
wind is usually varying with height U(z), which leads to more complex wave properties including
the reflection and suppression of waves. These aspects will be discussed in Sections 6 and 7.

z

x

U

x0

c

Fig. 5.9: Schematic of a stationary gravity wave with phase speed c opposite to the constant wind speed
U . The ridges and troughs are fixed in space with respect to the surface (x-direction).
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5.5 Triggering gravity waves

In the previous chapters, we have shown that gravity waves can exist in a stably stratified fluid.
This was done by prescribing wave solutions to the equations of fluid motion. But the question
of how these waves are initiated from a fluid state of rest was not discussed. In fact, in real flows,
such as in in the atmosphere or the oceans, gravity waves do not exist a priori but have to be
triggered by some mechanism. Let us take the following example well known to everybody. On
a windless day, the water surface of a pond or a lake is very smooth with no surface waves to
be observed. If we now throw a stone into the water, we observe the development of circular
surface waves spreading outward from the point of impact as was already shown in Figure 4.3.
The reason for wave development is the downward forcing of the water surface by the impact of
the stone which creates a pressure disturbance leading to surface wave development.

A quite similar mechanism for triggering gravity waves can be observed in the atmosphere
occuring in a convective boundary layer with a stably stratified layer above. The thermals
impinging on the inversion at the top of the boundary layer (at a height of 1-2 km) deform this
layer in the vertical direction and hence initiate oscillations in the stably stratified atmosphere
above as shown schematically in Figure 5.10. The resulting gravity waves in the stably stratified
atmosphere above are called “thermal waves” and have been treated in the book on thermals by
Hertenstein (2005) to be discussed below in Section 10.2.

The second mechanism for triggering gravity waves is due to the mechanical forcing of the
horizontal wind by mountain barriers and is the most important mechanism for gravity wave
initiation of mountain waves suitable for soaring flight. The principle of topographic forcing
can be illustrated by considering an air flow approaching a two-dimensional mountain ridge
as sketched in Figure 5.11. As the air cannot penetrate the surface, the flow must follow the
orography near the ground. Hence, the incoming flow with wind speed u is deflected from the
horizontal and has now a vertical velocity component denoted by w in Figure 5.11. The vertical
wind at the upwind side of the ridge is called ridge lift by soaring pilots and was traditionally
the only source of lift for soaring before the detection of thermal lift. Details on ridge lift for

Fig. 5.10: Schematic of gravity waves triggered by thermals impinging on the boundary layer inversion
(thick line).
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Fig. 5.11: Schematic of the vertical velocity w induced by deflection of a horizontal wind u by an
asymmetric mountain barrier.

soaring flight is discussed in detail in Hertenstein (2011) and will not be treated here. We are
more interested in the question of how gravity waves will be triggered by ridge lift in a stably
stratified atmospheric environment as will be shown in the next chapter.

Here we just give some estimate of the strength of the ridge lift which will also be important
for the amplitude of mountain waves in the lee of the ridge. In Figure 5.11, the mountain height
is denoted by H and the mountain half-width by D. The angle of the mountain slope, denoted
by α, is given through the relation

tan(α) = H

D
. (5.34)

If we assume for simplicity that the speed u of the oncoming air flow is not reduced when hitting
the mountain but only follows the slope of the terrain, the vertical wind component w induced
by the slope is related to the oncoming wind speed u by

w = u sin(α). (5.35)

For small α (α less than 20◦), calculus provides the approximation sin(α) = tan(α) and hence
we obtain for the vertical velocity induced by the mountain slope

w = u
H

D
. (5.36)

Typical mountains of medium size have H ≈ 1000m and D ≈ 10000m. Hence, H/D = 0.1
and α = 6◦, so the ridge lift w will be u/10. For a wind speed of 10m/s (18 kn), we get a
terrain-induced vertical velocity of w = 1m/s. If the half width of the mountain is reduced
to D = 5000m, the slope increases to H/D = 0.2 (α = 11◦) and the ridge lift is doubled to
w = 2m/s. The dependence of w on mountain slope is shown schematically in Figure 5.11.

On the lee side of the mountain, one has just the opposite case: the air flow will follow the lee
slope and produce a negative vertical velocity w making ridge soaring only possible above the
upwind slope. The simple formula for ridge lift also tells us that steeper slopes produce stronger
lift, but also stronger downward flow on the lee side. The latter is important for the triggering
of mountain waves, where the mountain slope of the lee side is important for the wave strength
as will be discussed later.
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5.6 Forces driving internal gravity waves

In the preceding sections, we have presented internal gravity waves as possible solutions of
equations describing fluid motion. These are the mathematical formulations (see appendix) of
general conservation principles in physics, including the conservation of momentum, heat and
mass. In this section, we will consider the forces driving gravity waves in some detail. In Section
3.4, we have described the oscillations of fluid particles in a stratified fluid due to the buoyancy
force, which was defined as the difference between the gravity force acting directly on the mass
particle and the vertical pressure force due to hydrostatic pressure of the fluid environment. This
force is also one of the driving forces in gravity waves (see Section 5.1 and the appendix), but
as it is only acting in the vertical direction, it produces only vertical motion. The organisation
of horizontal waves in a fluid is only possible through pressure forces acting on all the fluid
particles and from walls enclosing the fluid. Coupling between fluid particles is also possible by
frictional forces, but these are not the primary drivers of gravity waves. These forces act more
to damp wave amplitudes rather than as a source of wave motion. Hence, idealized wave motion
is usually described without frictional forces (a so-called inviscid fluid) as is also done here.

In the following, we consider the interaction of the buoyancy force with the pressure force
for the simple wave motion described in Sections 5.1 – 5.3. In these sections, the fields of the
perturbation temperature θ(x, z, t) and the perturbation pressure p(x, z, t) of gravity waves have
been presented for various cases. The buoyancy force B and pressure forces, Px and Pz, in the
horizontal and vertical directions are related to these wave properties by

B = g

Θ0
θ, (5.37)

Px = − 1
ρ0

dp

dx
(5.38)

and
Pz = − 1

ρ0

dp

dz
, (5.39)

where Θ0 and ρ0 are constant reference values for the temperature and density of the fluid,
respectively.

As outlined in Chapter 2, these forces drive fluid motion according to Newton’s law by

du

dt
= Px (5.40)

and

dw

dt
= Pz +B, (5.41)

where du/dt and dw/dt are the accelerations in the horizontal and vertical direction, respectively.

Concerning the buoyancy force B, it should be noted that the perturbation temperature θ
of a fluid particle at positions, x and z at time t, is not defined as the difference between the
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particle temperature and the temperature of its surrounding as in the derivation of the buoyancy
of single particles lifted in a still environment in Sections 3.3 – 3.5, but with respect to the initial
state Θ0(z) of a stratified fluid (air or water) at rest:

θ(x, z, t) = Θ(x, z, t)−Θ0(z), (5.42)

where Θ(x, z, t) is the particle temperature. This is necessary because in gravity waves, all fluid
particles are moving up and down with respect to their initial equilibrium position at some
height zi where Θ(x, zi, t) = Θ0(zi) or θ(x, zi, t) = 0 (see Fig. 5.13). Hence, the buoyancy must
be defined as an excess in temperature (or density) with respect to this equilibrium temperature
(or density) and not with respect to the neighboring particle at the same height.

In the following, some examples of forces acting on a fluid particle in a gravity wave are
presented.

(a) A popular explanation

As the full physics of internal gravity waves are not always easy to understand, more popular
explanations of the formation of gravity waves exist based on single fluid parcels oscillating in
a stably stratified flow. Considering the situation sketched in Fig. 5.12 showing an fluid parcel
moving at a certain height z = z0 with the wind in the horizontal direction. As there is no
vertical motion, the forces acting on the parcel in the vertical direction, the gravity force per
unit volume G (= −gρp) and the hydrostatic pressure force per unit volume P (= −dph/dz),
must be in equilibrium. Concerning the vertical variation of these forces, the gravity force G
remains constant as the parcel density ρp does not change. The hydrostatic pressure force P due
to the environmental fluid mass is related to the environmental fluid density ρ by the hydrostatic
pressure law (Section 2.4) as P = gρ. As the density ρ decreases with height in a stably stratified
fluid, the variation of pressure force P with height is given by

dP

dz
= g

dρ

dz
< 0. (5.43)

Hence, in a stably stratified fluid, the hydrostatic pressure force decreases with height.

Now we consider what happens, if the fluid parcel is pushed upward instantaneously at some
position x = x0 as indicated by the green arrow in Fig. 5.12 (in practice, this could be due to a
thermal impinging from below or by obstacle forcing as was discussed in Section 5.5). According
to (5.43), the pressure force P above the equilibrium height z0 is less than at z = z0, but the
gravity force G remains the same as indicated in Fig. 5.12. The resulting net force results in an
downward acceleration of the parcel. If the parcel is below the height z0, the pressure force P is
larger than at z0 as is also shown in Fig. 5.12. The resulting net force hence leads to an upward
acceleration of the parcel. The difference between gravity force G and hydrostatic pressure force
P is just the buoyancy force B as introduced in Chapter 3 and shown in the lower part of Fig.
5.12.
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As discussed in Section 3.4, buoyancy forces will lead to vertical oscillations of fluid parcels
lifted from their equilibrium position z0. In Fig. 5.12, the parcel is oscillating up and down but
at the same time is moving horizontally with the wind. The parcel trajectory will thus follow a
sine-wave in the horizontal direction. If the forcing at position x0 acts on the all fluid parcels
moving originally at the height z = z0, the result will be a stationary sine-wave as shown in Fig.
5.12. As only buoyancy forces are acting in this flow situation, the wave is indeed formed due
to buoyancy as is often assumed for the formation of mountain lee waves. But in the situation
sketched in Fig. 5.12, the parcels moving horizontally at their initial height z0 do not interact
among each other or with fluid parcels located above or below. In reality however, all fluid parcels
in the x-z-plane will be affected by the forcing at position x0 and the resulting gravity wave
will be the result of buoyancy forces and pressure forces acting in the horizontal and vertical
direction in order to fulfill the continuity principle outlined in Section 2.6.

P

G

x

z

z0

x0

Wind
=⇒

x

z

z0

x0

B

Wind
=⇒

Fig. 5.12: Sketch of the forces acting on a fluid parcel (indicated by a circle) in a stably stratified fluid
while moving in the horizontal direction. The parcel is pushed upward at position x = x0 (green arrow).
The trajectory of the parcel is indicated by the black line. Upper part: G = gravity force, P = hydrostatic
pressure force. Lower part: B = buoyancy force.
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Fig. 5.13: Location of fluid parcels in a stably stratified fluid. Blue colors: heavy fluid parcels, red colors:
light fluid parcels. Left: fluid at rest. Right: instantaneous situation in a free gravity wave with vertical
phase lines as described in Section 5.1. Dashed yellow lines: location of fluid parcels in the middle layer
at rest.

This situation is shown in Fig. 5.13, where the displacement of all fluid parcels from their
initial equilibrium due to a gravity wave is sketched. Hence, although buoyancy forces are the
main source of gravity wave formation, the interaction of all fluid parcels in the wave has to be
due to pressure forces as will be shown in the examples described below.

(b) Free gravity waves in an unbounded domain

As presented in Section 5.1, the solutions for the pressure field (eq. 5.4) show that lines of
constant pressure are oriented parallel with the phase lines. Hence, the total pressure force P
(the sum of Px and Pz) is acting at right angles to the phase lines. The buoyancy force B is
always acting in the vertical direction but can change sign depending on the location of a fluid
particle with respect to its equilibrium position where B = 0. As outlined in Section 5.1, fluid
particles in this kind of gravity wave move along straight lines slanted backward with respect
to the vertical coordinate z (see Fig. 5.4) with the forces acting on a fluid particle during its
motion sketched in Fig. 5.14 . Without pressure forces, the particle would move only in the
vertical direction due to buoyancy forces. Hence, in order to move along the inclined phase line,
pressure forces must also push the particle in the horizontal direction as sketched in Fig. 5.14 .
The magnitude of the pressure force P can be related to the magnitude of the buoyancy force
B by P ∼ B sin(α). Hence, P is always less than B and vanishes for the case of α = 0 (vertical
phase lines).

(c) Free gravity waves in a bounded domain

This type of gravity wave has been discussed in Section 5.3 and might be regarded as the other
extreme to the gravity waves in an unbounded domain discussed in Section 5.1 and in part (b)
above, as the fluid is now bounded by solid surfaces at z/H = 0 and 1 as is shown in Fig.
5.15. These waves have been observed in laboratory experiments and have some similarities



56 5 Internal gravity waves

z

z0 x

α

B

P Pz

Px

Fig. 5.14: Sketch of the forces acting on a
fluid particle in an internal gravity wave.
The particle is moving along the straight
line inclined at an angle α to the vertical
direction (dashed line). B: buoyancy force,
red or blue arrows, P : pressure force, black
arrows. The horizontal and vertical com-
ponents of the pressure force, Px and Pz

are indicated by dashed arrows. Red: partic-
le warmer than environment, blue: particle
colder than environment.

with trapped gravity waves like mountain lee waves (see Chapter 7). The wave fields of potential
temperature θ(x, z, t) and pressure p(x, z, t) are provided by equations 5.23 and 5.26. The fields
of buoyancy and pressure forces can be obtained from these by equations (5.37 - 5.39). For an
instantaneous time t = t0, the field of total potential temperature (base state Θ(z) + wave field
θ(x, z, t0)) is shown in Fig. 5.15 and the corresponding fields of buoyancy and pressure forces
are shown in Fig. 5.16.

By comparing the top and middle parts of Fig. 5.16, it can be seen that buoyancy and
vertical pressure forces are exactly in phase but of opposite sign. Concerning the magnitude of
both forces, it can be shown that for the special wave configuration discussed here, the buoyancy
force B is always larger than the vertical pressure force Pz. Hence, the net vertical force has the
direction of buoyancy force but is less than the buoyancy force alone. This is different from the
simple case discussed in (a), where buoyancy is the only force acting on the air parcel (see Fig.
5.12). The relative magnitude of both forces shown in Fig. 5.16 is given by B/Pz = 1+4(H/L)2.
When the horizontal wavelength L is much larger than the vertical extent H, we have B ≈ Pz

which means that the vertical pressure force is approximately in hydrostatic balance with the
buoyancy force and the wave motion is mainly driven by horizontal pressure forces Px (see
also Section 5.7). In the opposite case, L � H, the vertical pressure force Pz is much smaller
than the buoyancy force and the gravity wave is mainly driven by buoyancy forces acting in
the vertical direction. In any case, pressure forces do not vanish completely as with the simple
parcel argument provided in Section (a), but modify the buoyancy forces and are responsible for
horizontal motion in gravity waves as manifested in the elliptical shape of particle trajectories
shown in Figs. 5.6 and 5.8.

In summary, the interaction of buoyancy and pressure forces for this kind of gravity wave is
much more complex than for the cases shown in Figs. 5.12 and 5.14. Also, one has to consider
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Fig. 5.15: Field of potential temperature (base state Θ(z) + wave field θ(x, z, t0)) for a an instantaneous
time t = t0 for a bounded gravity wave discussed in Section 5.3. The fluid layer with maximum amplitude
is indicated by the thick line. The wave field is shown for one wavelength L. The height of the fluid layer
is given by H.

that only a snapshot of a moving gravity wave is presented in Figs. 5.15 and 5.16 since forces are
changing in magnitude, direction and time which makes it nearly impossible to draw a simple
picture of the mechanisms driving gravity waves.

5.7 Gravity waves driven by hydrostatic pressure forces

The discussion of forces acting on internal gravity waves provided in the previous sections has
shown that there is a complex interaction between buoyancy forces, acting always in the vertical
direction and pressure forces acting in the horizontal and vertical directions. We take the last
example of bounded gravity waves as an opportunity to discuss the nature of pressure forces in
these type of waves. As defined in Sections 2.4 and 2.5, pressure can be divided into a hydrostatic
part (say ph) due to the fluid column weight and a dynamic part (say pd) due to accelerations
and decelerations of fluid particles in the wave field (Bernoulli’s equation). This is of course
somewhat artificial as instruments to measure pressure cannot distinguish between these parts
a priori.

Through mathematical analysis of the gravity wave problem, it has turned out that gravity
waves with horizontal wavelengths larger than their vertical extent (say the height of the tro-
posphere, H ≈ 10 km) are mainly driven by horizontal gradients of hydrostatic pressure (see
Nappo (2012) and Sutherland (2010) for detailed discussions). These waves with wavelength
larger than about 30 km are then termed hydrostatic gravity waves and they occur mainly over
large mountain ranges like the rocky mountains or the Andes as will be discussed in Section 7.2.
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Fig. 5.16: Instantaneous fields of forces acting on the gravity wave shown in Fig. 5.15. Top: buoyancy
force B; middle: vertical pressure force Pz; bottom: horizontal pressure force Px. The non-dimensional
magnitude of forces are indicated by the variable thickness of isolines: thick lines: strong, thin lines: weak.
The direction in which forces are acting are indicated by arrows and the color code of isolines.
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In contrast, gravity waves with smaller wavelengths discussed in Sections 5.1 – 5.3 are usually
believed to be mainly forced by buoyancy forces. But here we may ask if this is really the case?
The reason for this question comes from the limitation that Archimedes’ principle and the related
buoyancy force, as discussed in detail in Chapter 3, are defined for a single fluid particle not
interacting with the surrounding fluid. This is rather idealized because the oscillating particle
will interact with its environment by dynamic pressure forces. In fact, if a solid obstacle (say a
sphere or cylinder) is shifted up and down periodically in a stratified fluid, it triggers gravity
waves in the environment (examples can be found in Sutherland, 2010).

The hydrostatic pressure law has been introduced in Sections 2.4 and 3.2 and is repeated
here for convenience:

dph
dz

= −gρ. (5.44)

It is strictly valid for a fluid at rest where no horizontal and vertical motion is present. In
this case, the fluid density ρ can vary only in the vertical direction: ρ = ρ(z). The resulting
hydrostatic pressure ph(z) can be obtained from (5.44) by integration:

ph(z) = ph(z = 0)−
∫
gρ dz, (5.45)

where ph(z = 0) is the pressure at the ground.

This law is also valid for fluids in motion where the vertical accelerations and velocities are
small compared with their horizontal counterparts. In this case, the density ρ and pressure ph

can also be a function of the horizontal coordinate x, i.e. ρ(x, z) and ph(x, z). As the horizontal
pressure force Px is related to the horizontal variation of pressure given in (5.38), horizontal va-
riations in the hydrostatic ph will lead to horizontal motion according to Newton’s law (equation
2.11). In fact, all large scale atmospheric motion (e.g., the wind in cyclones and anticyclones)
are driven by hydrostatic pressure forces.

The horizontal pressure gradient and hence the horizontal pressure force can be related to
the density field ρ(x, z) using the hydrostatic pressure law by

dph(x, z)
dx

∼ g
∫
dρ(x, z)
dx

dz, (5.46)

which shows that horizontal variations in fluid density will lead to horizontal motion as illustrated
by a simple example provided in Figure 5.17 where three columns of fluids with densities ρ1 and
ρ2 (ρ1 < ρ2) are separated by vertical walls. The hydrostatic pressure in each volume is obtained
from (5.45) as ph(z) = gρ(h − z). Hence, the pressure in the column with density ρ2 will be
always larger than in the columns with density ρ1. If we remove the walls between the fluid
layers at some time t = 0, the instantaneous hydrostatic pressure forces, as indicated by arrows
in Fig. 5.17, will lead to horizontal motion in the same direction. As the fluid is contained in a
box, it cannot escape and some vertical motion has to be induced by dynamic pressure forces
in order to fulfill the continuity principle (see Sections 2.5 and 2.6). Possible later stages of the
situation are sketched in the lower part of Fig. 5.17. In principle, this simple configuration can
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Fig. 5.17: Development of a two layer fluid with densities ρ2 (heavy fluid, blue) and ρ1 (light fluid, red)
initially separated by vertical sidewalls (upper left). The hydrostatic pressure forces after the removal of
the walls are indicated by arrows in the upper right. Later possible stages of fluid motion are shown in
the lower part of the figure.

lead to standing waves at the interface of the two fluid layers. In practice however, frictional
forces come into play and the final state will be a two layer configuration with the lighter fluid
(ρ1) located above the heavier fluid (ρ2), so that finally the fluid becomes stably stratified.

The arguments presented above for flows driven by hydrostatic pressure forces can also be
used to explain gravity waves. As was discussed in Section 5.6 (c), buoyancy forces and vertical
pressure forces are in near hydrostatic balance for waves with wavelength L much larger than
the vertical extent H of the wave field. In this case, the horizontal pressure forces are mainly
due to hydrostatic pressure gradients and vertical waves, which are then usually weak and have
to be driven by dynamic pressure forces.

For L ∼ H where the buoyancy force is larger than the vertical pressure force (see Section 5.6
(c)), vertical wave motion is driven by the sum of these forces and one can split the pressure into
a hydrostatic part ph and a dynamic part pd. Here, the hydrostatic part is in balance with the
buoyancy force and hence cannot drive vertical wave motion. Wave motion would instead have
to be driven by pressure forces due to vertical gradients of dynamic pressure pd, which would
then of course show a different distribution to that in Fig. 5.16. However, vertical wave motion
does not have to be small as for the pure hydrostatic case but may be of the same magnitude
as the horizontal wave motion.
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Formally, the equations for fluid accelerations in this interpretation of forces driving gravity
waves are described by

du

dt
= Phx + Pdx (5.47)

and

dw

dt
= Pdz, (5.48)

where Phx is the horizontal hydrostatic pressure force and Pdx and Pdz are the horizontal and
vertical dynamic pressure forces, respectively. This has to be compared with the buoyancy view
of wave forces given by equations 5.42 and 5.44. In any case, the resulting wave forms have to be
the same (e.g., as provided in Section 5.3), with the difference being in the physical interpretation
of the buoyancy force versus the hydrostatic pressure force as the main driving force for gravity
waves.

Fig. 5.18: Hydrostatic pressure forces acting in the gravity wave shown in Fig. 5.15. Top: strength and
direction of pressure forces as indicated by arrows at some locations in the wave. The vertical dashed lines
indicate columns with fluid parts of different density (blue: dense, red: less dense). Middle: hydrostatic
pressure variations ∆p at the surface (z = 0) as induced by the wave. Bottom: variation of the hydrostatic
pressure force Phx at the surface. Arrows indicate the direction of forces.



62 5 Internal gravity waves

This aspect is illustrated in Fig. 5.18, where the hydrostatic parts of pressure are sketched for
the wave discussed in Section 5.6c. The variation of hydrostatic pressure at the surface (z = 0)
has been obtained by integration of the hydrostatic pressure law (eq. 5.45) over the fluid columns
indicated by vertical dashed lines. The pressure deviation from the situation in the fluid at rest
p0 (see Fig. 5.13, top), ∆p = p(x) − p0, as induced by the gravity wave is shown in the middle
part of Fig. 5.18. The high surface pressure to the left is due to the denser fluid (blue) in the
fluid columns compared with the state at rest. The low surface pressure to the right is caused by
lighter fluid (red) in the fluid columns. The resulting hydrostatic pressure force at the surface
(z = 0) as obtained from eq. 5.46 is shown in the bottom of Fig. 5.18. The vertical variation of
horizontal hydrostatic pressure forces Phx in the wave is indicated at some locations by arrows.
As hydrostatic pressure forces are acting only in the horizontal direction, vertical wave motion
has to be induced by dynamic pressure forces Pd (not shown here) according to eq. 5.48.
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6 Gravity waves forced by topography

6.1 The Scorer parameter

We now treat the case where gravity waves in the atmosphere are triggered by the topography
of the earth’s surface as discussed in Section 5.5. We assume that the background stratification
and the oncoming wind speed do not change with time, hence the wave forcing is stationary.
In practice, this means that the wave crests and the related updraft and downdraft areas as
induced by the topography are fixed in space and time. This is the perfect situation for soaring
flight, as the lift sources are known to the glider pilots once they are provided with a good wave
forecast (see also Section 8). Before we come to the case of waves behind single mountain ridges,
we first treat the seemingly academic case of periodic topography as sketched in Figure 6.1.
Nonetheless, this case permits simple analytic solutions of the wave equations, allowing some
discussion of the physical mechanism of mountain waves.

In order to calculate the wave forms triggered by periodic ridges from the wave equations as
given in the appendix, one has to provide the vertical profiles of the atmospheric stability in terms
of the Brunt-Vaisala frequencyN(z) and the wind speed U(z). We have already assumed that the
mountains are two-dimensional so that wind direction is always perpendicular to the mountain
crests. In fact, these parameters appear as N/U within the wave equations (see appendix AII),
leading to the so-called Scorer-parameter after the British mathematician and glider pilot R. S.
Scorer and is denoted by S here:

S = N

U
(Scorer parameter). (6.1)

This parameter is essential in determining the wave behavior for stratified flow over orography
as will be discussed in the following chapters. We may note that the Scorer parameter is mostly
called “l” in the literature, but we will keep the notation S here. Also, the full Scorer parameter
includes an additional term for curvature of the velocity profile which is usually neglected in
practical applications. The Scorer parameter has the dimensions of an inverse length (1/m) or,
in terms of wave physics, of a wave number. Hence, one can assign a wavelength to S defined by

Ls = 2π
S

= 2πU
N

(Scorer length). (6.2)

λ

H

Fig. 6.1: Schematic of periodic terrain with height H and wavelength λ forcing gravity waves in the
atmosphere above. The flow near the surface is indicated by the thin line.
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Tab. 6.1: The Scorer length Ls in km for different combinations of wind speed U and temperature gra-
dients, dT/dz and dθ/dz. Note that the Scorer length can be also taken as an estimate for the wavelength
of mountain lee waves.

dT/dz dθ/dz U (m/s)
(K/100m) (K/100m) 10 20 30

- 0.65 0.35 6.3 12.6 18.9
0.0 1.0 3.5 7.0 10.5
2.0 3.0 2.0 4.0 6.0

As can be seen from this definition, the Scorer length corresponds to the wavelength of stationary
gravity waves with intrinsic frequency ω = N in an airflow with constant wind speed U as shown
in Section 5.4. Some values for the Scorer length as a function of wind speed U and temperature
gradient dT/dz are given in Table 6.1. We will use the Scorer length in the following discussion
of wave solutions for flow over periodic topography.

As sketched in Figure 6.1, the earth’s surface is described by a periodic topography, h(x) as

h(x) = h0 sin
(2π
λ
x

)
, (6.3)

where λ is the wavelength of the periodic “mountains” and h0 = H/2. Before we present some
solutions of the wave equations for a stably stratified flow over this specific lower boundary,
we analyze the behavior of air parcels following the terrain surface. The time needed for an air
parcel to move over one wavelength of the periodic surface is given by

τf = λ

U
(forcing time scale) (6.4)

which can be also expressed by a frequency

ωf = 2π
τf

= 2πU
λ

(forcing frequency). (6.5)

As the parcel is following the surface terrain, it also moves up and down during this time.
Hence, it is performing a forced vertical oscillation with period τf or frequency ωf. This has to
be compared with the “natural” oscillation frequency N or period τn = 2π/N of air parcels in a
stably stratified fluid. These frequencies can also be related to the mountain width λ and Scorer
length Ls by

ωf
N

= Ls
λ
. (6.6)

We will make use of this relation for the physical interpretation of the results given in the
following section.

6.2 Gravity waves induced by periodic terrain

We consider the flow over a topography consisting of periodic ridges and troughs as sketched in
Figure 6.1 and is described formally by a wave as given above. For simplicity, we assume that
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stratification N and wind speed U are constant with height, hence also the Scorer parameter S =
N/U is constant. For this simple setup, analytical solutions for the wave equation (see appendix)
are possible and can be found, e.g., in the monographs by Nappo (2012) and Sutherland (2010)
or in the review article by Durran (1990). Here we will only present the final results.

The problem is characterized by two length scales, the wavelength of the topography λ and
the Scorer length scale Ls = 2π/S as defined in the previous section. It has been found that the
possible waveforms from periodic surface forcing depend on the difference between these length
scales. The corresponding wave solutions for the vertical velocity w are given for the cases Ls ≤ λ
(a) and Ls ≥ λ (b) below.

(a): Ls ≤ λ (ωf ≤ N) vertically propagating waves (6.7)

w(x, y) = w0 cos
(2πx

λ
+ µz

)
(6.8)

The wave amplitude at all heights corresponds to the amplitude forced at the periodic surface
given by w0 = U2πh0/λ, but the phase lines are tilted backward in the vertical by the phase
µz, where µ is related to the Scorer length and the mountain length by µ =

√
|k2 − S2| with

k = 2π/λ and S = 2π/Ls.

The vertical velocity field and the resulting streamlines including the mean wind U , which
can be also interpreted as lines of constant potential temperature, are shown in Figure 6.2. The

Fig. 6.2: Streamlines and field of vertical velocity (colored) for stratified flow over periodic terrain with
wavelength λ for the case of constant Scorer length Ls. Propagating waves: Ls ≤ λ. The wind U is directed
from left to right.
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waves extend without damping throughout the whole atmosphere and the phase lines are tilted
backward against the oncoming wind U .

In this case, the forcing frequency ωf of the parcel motion on the terrain surface is less
than the natural frequency N of the stratified fluid. Hence, according to the results presented
in Section 5.1, the phase lines should be tilted with an angle of α to the vertical, where α is
determined by cos(α) = ωf/N . In fact, the solutions for forced gravity waves over periodic terrain
correspond to the time dependent solutions of free gravity waves presented in Section 5.1.

(b): Ls ≥ λ (ωf ≥ N) vertically damped waves (6.9)

In this case, the solution is

w(x, z) = w0(z) cos
(2πx

λ

)
. (6.10)

The wave amplitude is now variable with height, but the phase lines are oriented in the vertical.
The amplitude w0(z) has its maximum value wm at the surface and decays with height according
to

w0(z) = wm exp(−µz), (6.11)

where the resulting streamlines are shown in Figure 6.3. The wave damping in the vertical
direction is due to the fact that now the wave forcing frequency ωf is larger than N . But as has
been shown in Section 5.1, a stratified fluid cannot support vertical oscillations with frequencies
larger than the Brunt-Vaisala frequency N .

Fig. 6.3: As in Figure 6.2 but for damped gravity waves: Ls ≥ λ.
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6.3 Scorer parameter variable with height

The results in Section 6.2 showed the importance of the Scorer parameter (or the Scorer length)
with respect to wave properties in a forced stratified flow even in the simple case of constant
N and U . In the atmosphere however, the Brunt-Vaisala frequency and wind speed are usually
varying with height, which leads also to a height dependent Scorer parameter S(z). The effect
of a variable Scorer parameter will be demonstrated by the following example.

In Figure 6.2, we have presented results for a flow over periodic surface where the Scorer
length Ls is constant with height and smaller than the surface length λ (case a). For the specific
case presented here, λ = 2000m and Ls = 1700m. In a second case, we keep the Scorer parameter
constant for the first 200m with a sharp decrease to half of its value up to 500m and constant
above this level. This is achieved by a corresponding increase in wind speed U(z). By this we
have for the Scorer length scale: Ls ≤ λ for z ≤ 300m and Ls ≥ λ for z ≥ 300m. The resulting
streamlines and vertical velocities are shown in Figure 6.4. Here, the phase lines are oriented in
the vertical and the wave amplitude is damped with increasing height as in case (b) in Section
6.2 (see Figure 6.3). The difference with this case is that the forcing frequency ωf is smaller than
the Brunt-Vaisala frequency N , thus permitting vertically propagating waves as in Figure 6.2.
The resulting wave frequency now increases with height due to the increase in wind speed. Above
the level where Ls = λ, this results in ω ≥ N so that gravity waves can no longer be supported
by the surface forcing. These kinds of gravity waves are called “trapped” gravity waves which
will be discussed in the context on mountain lee waves in the next chapter.

Fig. 6.4: As in Figure 6.2 but for trapped gravity waves. The Scorer length increases with height:
z ≤ 300m: Ls ≤ λ, z ≥ 300m: Ls ≥ λ.
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7 Mountain waves

7.1 Some general aspects

In the last chapter, we examined the more or less academic case of atmospheric gravity waves
triggered by periodic surface topography. The reason was that some simple solutions of the wave
equations can be found for this setup and the importance of the Scorer parameter S = N/U for
wave development could be shown. Real topography is of course not so simple, although some
periodic terrain features can be found, e.g., in the form of longitudinal sand dunes. Mountain
landscapes usually consist of several ridges of different horizontal sizes and heights that are
not necessarily aligned parallel with respect to their crests. But even then, gravity waves can be
organized in more or less a two-dimensional fashion perpendicular to the wind direction as shown
in the satellite picture of the Adriatic Sea in Figure 7.1. These quasi two-dimensional mountain
waves are ideal for wave soaring and will hence be the focus of this chapter. We might mention
that gravity waves are also triggered by isolated three-dimensional mountains like vulcanoes or
islands as shown in Figure 7.2 for the South Sandwich Islands in the Southern Atlantic.

To predict whether gravity waves will be triggered by a certain topography is not simple
and can only be done by numerical models of the full nonlinear equations for atmospheric wave
motion. Examples of those predictions are given in the next chapter. Here, we will only treat
isolated two-dimensional mountain ridges, which are also rare in natural landscapes. Gravity
waves triggered by these obstacles have been treated in a more mathematical fashion by Suther-
land (2010) or Durran (1990, 2003). Some more popular treatments are provided by Whiteman
(2000) and Barry (2008) and with application to soaring flight by Hertenstein (2011) and Mar-

Fig. 7.1: Satellite picture of atmospheric cloud structures induced by gravity waves over Southern Italy
and Serbia.
Source: NASA Visible Earth
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Fig. 7.2: Satellite picture of cloud structures over the South Sandwich Islands induced by three-
dimensional gravity waves. These cloud forms are also called ship waves due to their similarity with
surface water waves formed behind moving ships.
Source: NASA Modis Rapid Response Team

tinez (2012). To determine whether gravity waves will be formed in the lee of isolated mountain
ridges depends on various factors as shown in Figure 7.3: the length λ, altitude H, the wind
speed U(z) and the temperature T (z).

Due to these various factors, conducting laboratory experiments on the isolated mountain
wave problem was quite popular in the early days of wave research (see, e.g., the monograph
by Baines, 1995). An example of this kind of experiment is shown in Figure 7.4. The most
simple way is to tow an obstacle (the red half cylinder in the figure) in a stratified fluid which is
usually formed by layers of salt water of different density (colored in the figure). Although this
arrangement is rather idealized, many features of mountain waves can be identified in laboratory
experiments (see Baines, 1995). The interpretation of the experiment shown in Figure 7.4 in

Fig. 7.3: Schematic setup for the problem
of mountain waves. U(z): vertical wind pro-
file, T (z): vertical temperature profile. λ:
mountain width, H: mountain height.
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Fig. 7.4: Laboratory experiment on gravity waves in stratified flows over isolated obstacles. The obstacle
(red) is towed from right to left through the stratified fluid (colored layers of salt water).

terms of atmospheric flow is given schematically in Figure 7.5. The isolated mountain induces
gravity waves on the leeward side which extend horizontally and vertically. The phase lines
(amplitude maxima) are tilted against the oncoming wind similar to the case of propagating
gravity waves for flow over periodic terrain (see Section 6.2).

7.2 Vertically propagating mountain waves

In Section 6.2 on waves over periodic terrain, we discussed the case Ls < λ, where λ was the
wavelength of the sinusoidal surface. In that case, the solutions of the wave equations gave ver-
tically propagating waves with backward tilting phase lines (see Fig. 6.2). For single mountains,
the base diameter of the mountain is denoted by λ in Fig. 7.3. In this section, we discuss the
case Ls < λ. From Tab. 6.1, one can see that this condition will be found for larger mountain
ranges like the Andes, the Alps or the Sierra Nevada. If the Scorer parameter S or the Scorer
length Ls does not vary with height, the resulting wave formation is shown schematically in

Fig. 7.5: Interpretation of the water tank experiment shown in Figure 7.4 with respect to the flow
situation in the atmosphere. Wind is from left to right; air parcels follow the streamlines (black). Phase
lines are indicated in red.
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Fig. 7.6: Schematic of vertically propagating gravity waves induced by large mountains.
Source: UCAR/COMET

Figure 7.6. While in most cases only one wave crest is observed over the mountain, this wave
can reach the upper troposphere (about 10 km), or even the lower stratosphere (about 15 km).
This is just the situation where high altitudes can be reached by sailplanes. In fact, practically
all wave flights up to more than 10 km have been performed over large mountain ranges like the
Andes, the Alps (European and New Zealand) and the Sierra Nevada.

The structure of vertically propagating gravity waves over a mountain of height H = 1 km
and length λ = 40 km as calculated with a linear wave model is shown in Figure 7.7. The areas
of positive and negative vertical velocity (lift) are staggered in the vertical which demands a
special tactic for wave soaring.

7.3 Trapped mountain waves (lee waves)

Now we consider the case where Ls ≈ λ, which means that the same length as the expected
wavelength is about the mountain width λ. Considering typical values for Ls in Table 6.1, one
can see that this condition will be met quite often for medium or small scale mountain areas
like in Northern Germany or in the UK. If the Scorer parameter S does not change too much
with height, which means that temperature and wind profiles of the oncoming flow vary only
little in the vertical, the resulting wave system is similar to the one shown in Figure 7.5. The
mountain waves propagate downstream in the vertical and horizontal direction and weaken with
distance from the mountain. In most cases however, the wind speed is increasing with height
due to general wind behaviour in the free atmosphere. Consequently in these cases, the Scorer
parameter decreases with height (the Scorer length increases with height). This situation was
already discussed for the case of periodic surface terrain in Section 6.3 (see also Figure 6.4).
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Fig. 7.7: Streamlines (black) and the field of vertical velocity (coloured) for the case Ls < λ and Scorer
parameter S constant with height as obtained by a linear wave model. The size of the mountain is
H = 1 km and λ = 40 km. Positive lift: red; negative lift: blue.

For the case of a single mountain, the resulting wave system is shown in Figure 7.8. The
waves are now damped in the vertical and reach only altitudes of 6-8 km in practice, but the
waves extend now for many wavelengths downstream in the horizontal direction. These waves
are called trapped mountain waves or lee waves in the literature. In fact, periodic wave clouds
as seen often in satellite pictures like in Figure 7.1 are due to these kinds of trapped gravity
waves. The rotors under the wave crests as indicated in the lower layer of Figure 7.8 are treated
separately in Section 8.

The structure of trapped gravity waves for a moderately sized mountain with H = 640m
and λ = 16 km as obtained with a linear wave model is shown in Figure 7.9. The resulting lee
waves are most favourable for wave soaring over these mountains as the areas of upward velocity
(positive lift) extend throughout the depth of the wave system without any vertical inclination.

7.4 Wave properties of interest for soaring flight

Once mountain waves do occur or are forecasted (see Chapter 8), some basic properties of
these waves are of interest for glider pilots. These are wavelength, wave amplitude (vertical
displacement) and wave lift (vertical velocity). From observations taken during soaring flight
and model simulations like those presented in Chapter 8, it has been found that these wave
properties depend on the height, width and shape of the mountain and on the vertical wind-
and temperature profiles as was sketched already in Figure 7.3. Here, we will give only some
simple estimates for the length, amplitude and lift of mountain waves.
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Fig. 7.8: Schematic of trapped mountain waves (lee waves) induced by moderately sized mountains. The
lowest layer is characterized by turbulence and wind shear induced by rotors.
Source: UCAR/COMET

Fig. 7.9: Streamlines and vertical velocity for the case Ls ≈ λ and Scorer parameter decreasing with
height as obtained by a linear wave model. Mountain size is H = 640m, λ = 16 km. Coloring for the
wave lift as in Figure 7.7.
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A. Wavelength
The natural wavelength L of stationary gravity waves like mountain waves is given by the Scorer
length Ls as defined by equation 6.2 in Section 6.1. We repeat this relation here for the benefit
of further discussion below

L = 2π U
N
, (7.1)

where U is the wind speed and N is the Brunt-Vaisala frequency as defined in equation 3.29 in
Section 3.5. Typical wavelengths for combinations of U and N were given in Table 6.1, Section
6.1. For the formation of mountain lee waves (see Section 6.3) that are most favorable for wave
soaring, the condition is that the Scorer length increases with height. That would mean one
would get a smaller wavelength near the mountain top and a larger wavelength in the upper
part of the wave system. But as the phase lines of lee waves are not tilted against the vertical
direction (see Figs. 7.9 and 7.10), the flow system must select a wavelength between the minimum
and maximum Scorer length. To a first approximation, we might assume that the stratification
is given by the ICAO standard atmosphere, where N = 0.011 1/s. Then the wavelength is
proportional to the wind speed U and we may approximate 7.1 by:

L(km) ≈ 0.57Um(m/s), (7.2)

where Um is the mean wind speed in the layer of the lee wave system. If the wind speed is
measured in kilometres/hour (km/h) or in knots (kn), then

L(km) ≈ 0.16Um(km/h); L(km) ≈ 0.29Um(kn). (7.3)

Formula 7.2 is quite similar to the estimation L(km) = 0.6U(m/s)− 3, as found in the soaring
literature. Hence, the wavelength based on equation 7.2 or 7.3 is larger than observed in practice,
but can still serve as guideline.

One may ask why the knowledge of wavelength is of interest for soaring flight as pilots would
usually fly parallel to the wave crests in order to use the positive lift associated with the wave as

Fig. 7.10: Close up of streamlines (black lines) and vertical velocity (colored) in a lee wave shown in
Fig. 7.9. Blue colors: downward motion, red colors: upward motion.
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Fig. 7.11: Vertical displacement z(x) of an air parcel due to a mountain wave with vertical velocity
w(x). U : upstream wind speed, L: wavelength, h: amplitude.

long as possible? One reason is that the horizontal extension of the updraft (but also downdraft)
areas is directly related to the wavelength, as is shown in Fig. 7.11.

B. Wave amplitude
Unless we are dealing with surface water waves, we cannot see mountain waves (lee waves)
directly, hence we usually have no idea about their amplitude. Before we give an estimate of
wave amplitude as related to the horizontal and vertical wind speed, we first provide a simple
estimate of the vertical excursion of air parcels in a stably stratified atmosphere. In Section
3.4, it was shown that a fluid parcel can undergo vertical oscillations due to buoyancy forces.
The temporal variation of the particle position (equation 3.17) was obtained for a parcel lifted a
small height h from its equilibrium position. One can also initiate the oscillations by pushing the
particle from its equilibrium position by a prescribed vertical impulse (initial vertical velocity)
denoted by w0 as sketched in Fig. 7.12 (this is like kicking a soccer ball). The solution of the
oscillation equation 3.15 is then given by

z(t) = w0
N

sin(Nt) (7.4)

z

θ

z0

h
θ(z)

w0

Fig. 7.12: Air parcel in a stably strati-
fied environment (potential temperature θ
increasing with height z) pushed upward
from its equilibrium position z0 by an in-
itial impulse w0.
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Tab. 7.1: Height amplitudes h (in m) for air parcels pushed in the vertical direction by an initial impulse
w0 for different stratification dθ/dz.

dθ/dz N w0 (m/s)
(K/100m) (1/s) 3 6 9

0.35 0.011 270 540 810
1.0 0.018 170 340 510
3.0 0.031 100 200 300

and the amplitude is determined through

h = w0
N
. (7.5)

The amplitude is larger for a larger impulse w0 and for a smaller Brunt-Vaisala frequency N
(weaker stratification). Some examples are given in Table 7.1. The total height difference an air
parcel is experiencing during one oscillation period is twice the amplitude h given in Tab. 7.1.
Sometimes, this value is denoted as the wave amplitude in the literature.

The amplitude of mountain waves is quite closely connected with the free amplitude of air
parcels oscillating in a stratified atmosphere as described by equations 7.4 and 7.5 as will now
be discussed. Let us consider the situation of the simple lee waves sketched in Fig. 7.11. An air
flow with wind speed U approaching a mountain ridge is forced to oscillate around its initial
height level z0 due to a wave with vertical velocity w described by

w(x) = w0 sin
(2πx
L

)
. (7.6)

The vertical displacement is then given by

z(x)− z0 = −h cos
(2πx
L

)
. (7.7)

The amplitude h is related to the vertical velocity amplitude w0 through

h = w0
L

2πU . (7.8)

At first, one gets the impression that the longest waves have the largest wave amplitudes for a
fixed combination of vertical velocity w0 and horizontal wind speed U . But the wavelength L is
also related to wind speed U by equation 7.1. By combining 7.8 with 7.1, the amplitude h can
be written as h = w0/N , which is just the same as for the vertical oscillations of a single air
parcel according to equation 7.5.

The trajectory of air parcels within lee waves are obtained by a combination of the horizontal
distance x and vertical displacement z(x) − z0 as shown in Fig. 7.11 indicating the areas with
upward and downward vertical wind components. One can see that these span half a wavelength
each and that the maximum velocities can be found in the middle of updraft and downdraft
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areas. This is of importance for practical wave soaring, especially when soaring in the direction
of the waves will encounter periodic positive and negative lift.

C. Vertical velocity (lift)
The amplitude h of mountain waves depends to a first approximation on the Brunt-Vaisala
frequency N and the maximum vertical velocity w0 as given in equation 7.5 and Table 7.1. Then
the question remains, which factors determine the vertical velocity in mountain waves? From
all wave properties, this is the most important for wave soaring. The reason is simple: the lift
a glider pilot can achieve is the difference between the vertical velocity of the air stream minus
the sinking rate of the airplane. If we assume a typical sinking rate of 1m/s, the surrounding
air must rise with a speed of at least 1m/s in order to stay airborne. When the air rises with
say 4m/s, the lift with respect to ground level would be 3m/s.

The magnitude of vertical velocity within mountain wave systems depends, as with the wa-
velength, on the mountain properties (height, base diameter, shape) and the meteorological
conditions (wind speed, stratification). These dependencies have been investigated by field ob-
servations, reports from glider pilots and numerical simulations (like those described in Chapter
8). Here we will present some principal rules derived from these investigations below:

1. The largest wave amplitudes are obtained when the natural wavelength L (see equation
7.1) matches the horizontal extension (base diameter λ) of the mountain ridge, i.e. L ≈ λ.

2. The wave amplitude is mainly determined by the strength of the downward flow on the
leeward mountain slope.

3. Asymmetric mountains with steeper lee-side slopes produce stronger waves.

4. Higher mountains produce larger wave amplitudes.

5. Stronger upstream winds lead to larger amplitudes.

Rule 1 is related to the fact that for L ≈ λ, the forcing length scale of the mountain (λ) is
in resonance with the resulting length scale of the mountain wave (L). That does not mean
that waves do not form if L > λ or L < λ, but in these cases the wave amplitude (vertical
displacement and vertical velocity) is weaker than in the resonance case.

Rule 2 is due to the internal dynamics of stratified flows over obstacles and is not easily
explained. One could loosely compare the behaviour of airflow over mountains with the situation
of a river flowing over a weir, where the largest acceleration occurs on the weir slope. Indeed,
this comparison holds for so-called downslope wind storms occurring occasionally on the leeward
slope of large mountain ranges like the Rocky Mountains. These winds are closely related to the
gravity wave system formed above the mountain (see, e.g., Durran, 1990). For the case of lee
waves, we might consider Fig. 7.10, where the upward flow at the luff slope is much weaker than
the downward flow on the lee side of the mountain. As illustrated in Fig. 7.10, mountain lee
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waves usually start with sinking air above the mountain and the rising air usable for soaring
flight will be found about half a wavelength downstream from the mountain top.

Rules 3 – 5 are related to the forcing of the oncoming airstream by the mountain ridges
as will be discussed now. Vertical wind components (updraft or downdraft) in mountain wave
systems are mechanically induced by deflection of the horizontal approach flow (denoted by U)
by the mountain. The flow near the ground has to follow the shape of the mountain surface
as the air cannot penetrate the surface as sketched in Fig. 5.11, Section 5.5. Let us denote the
topography of the mountain ridge by h(x) and the undisturbed wind speed by U . If the air
stream follows the mountain topography, the vertical wind component w(x) is given by

w(x) = U
dh(x)
dx

, (7.9)

where dh(x)/dx is the mountain slope. For a simple estimation of the vertical velocity induced
by mountain ridges, we consider a mountain of triangular shape depicted in Fig. 5.11, where the
height is denoted by H and the half base diameter by D. For this case, the slope is constant
and is given as dh(x)/dx = H/D. Hence, the vertical velocity on the slope is also constant and
is given by:

w0 = U
H

D
. (7.10)

Some values for w0 for different mountain slopes and wind speeds are given in Table 7.2. The
vertical velocity over mountain slopes provided by equation 7.10 is not exactly the same as
can be expected in the lee waves forced by the mountain except for the more academic case
of periodic mountains treated in Section 6.2 (see, e.g., Fig. 6.2). But as the amplitude of the
forced lee waves depends on the amplitude of the forcing by the mountain, it might provide
some estimates for the expected wave lift.

Consulting equation 7.10 and Table 7.2, we can provide some support for rules 3 – 5 concer-
ning vertical velocities and amplitudes as found in mountain waves. Rule (3) is directly stated
in equation 7.10 as w0 is proportional to the mountain slope. Rule (5) also follows directly from
equation 7.10 as w0 increases linearly with the wind speed U . Rule (4) will hold for mountains
with the same half base diameter D. But as higher mountains usually have larger base dia-
meters, these mountains may be less steep compared with smaller ones. The observation that
stronger waves can be found behind higher mountains is more often related to the fact that the

Tab. 7.2: Vertical velocity w0 (in m/s) induced by a mountain slope H/D for different horizontal wind
speeds U .

U (m/s)
H/D 10 20 30
0.1 1 2 3
0.2 2 4 6
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wind speed U usually increases with height. Therefore, higher mountains experience larger wind
speeds and hence rule (5) applies.

The simple rules formulated above have been validated by many glider pilots soaring moun-
tain waves. For moderately sized mountains like in Northern Germany, vertical velocities w of
the order of 2 - 4m/s have been reported (see flight reports under www.schwerewelle.de). For
larger mountains like the European Alps or the Southern Alps of New Zealand, vertical winds
of 6 - 9m/s are not uncommon (see www.mountain-wave-project.com). Extreme upward and
downward air motion of 12m/s and more has been occasionally experienced by glider pilots
over the Andes region (see also www.mountain-wave-project.com) and the Sierra Nevada (see
Whelan, 2000).

In any case, wave properties like wavelength, wave amplitude (vertical excursion of air par-
cels) and vertical velocity (updrafts or downdrafts) vary from location to location and for the
same location from day-to-day depending on the meteorological conditions found on the ups-
tream side of the mountains. The simple formulas 7.2, 7.5 and 7.10 and the Tables 7.1 and 7.2
provide some rules of thumb for these wave properties.

7.5 Mountain waves as hazards to aviation

So far we have treated mountain waves as a possible source of lift for soaring flight. At the end
of this chapter, we might mention that the mountain wave system is also hazardous for general
aviation as illustrated in Figure 7.13. In this figure, two potential hazards are shown:

1. breaking gravity waves at high altitudes

2. turbulent rotors at low altitudes

It should be noted that these two phenomena do not occur at the same time for a given situation
as suggested in Fig. 7.13, but separately according to the conditions outlined in Sections 7.2 and
7.3.

Breaking gravity waves as sketched in the upper part of Fig. 7.13 occur mainly over large
mountain areas like the Alps or the Rocky Mountains when there is some decrease in wind
speed (increase of the Scorer parameter) at high altitudes. Then, the mountain waves behave
literally like breaking water waves on the beach. Wave breaking is accompanied by moderate
to strong turbulence, hence this phenomenon falls into the category of Clear Air Turbulence
(CAT). In fact, various reports of aircraft encounters with breaking gravity waves, sometimes
with damage to the aircraft and injuries to passengers, can be found in the literature. Here, we
mention only investigations of upper layer turbulence due to breaking waves over the contiguous
USA by Wolff and Sharman (2008, Journal of Applied Meteorology and Climatology, p. 2198-
2214) or the European Alps by Jiang and Doyle (2004, Journal of the Atmospheric Sciences,
p. 2249-2266). One might also consider accident reports by the US National Transport Safety
Board (NTSB) for cases of aircraft encounters with breaking gravity waves.
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Fig. 7.13: Sketch of potential hazards for aviation in mountain wave systems. Upper part: breaking
gravity waves; lower part: rotors.
Source: Mountain-Wave-Project

Concerning soaring flight, moderate to severe turbulence has been reported during some high
altitude flights of the Sierra Wave Project (Whelan, 2000) or flights performed by the Mountain
Wave Project over the Andes (www.mountain-wave-project.com) which might be attributed
to breaking wave events.

The other potential hazard in mountain wave systems is the rotor flow connected with lee
waves in the lower atmosphere. As illustrated in Fig. 7.13, rotors form approximately in the
layer between the surface and the mountain top. This phenomenon is much more frequent
than breaking mountain waves and has been experienced by most glider pilots practicing wave
soaring. Some quite dramatic encounters with rotors by glider pilots have been documented in
Whelan (2000). As moderate to severe turbulence is usually found in rotor flows, this part of
the mountain wave system is not only dangerous for soaring flight but also for general aviation
at lower flight levels. A more detailed description of rotors is provided in Chapter 9.
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8 Forecasting mountain waves

8.1 General considerations

Weather forecasts on the radio, television and newspaper are part of our daily media consump-
tion. The type and details of the weather forecast depend on the needs of the customer. This is
especially true for soaring flight, where the forecast of upward atmospheric motion is essential.
This includes the forecasts of convective weather conditions for thermal flight and of stably stra-
tified atmospheric conditions for wave flights. Weather forecasts for soaring flight are usually
treated in any book on soaring, e.g., the monographs by Eckey (2012) or Hertenstein (2005,
2011). A special publication entitled “Weather forecasting for soaring flight” has been published
by the OSTIV (2009).

In the following, we give some examples of forecasts of mountain waves. They range from
some empirical approaches, to model output from routine numerical weather prediction (NWP)
models provided by weather services. With respect to the latter, we might remark that these
models are based on the physical laws for fluid motion, which were given in simplified forms in
Section 2 and in the appendix. As no analytic solutions of these equations can be found for the
complicated forms of atmospheric motion, the equations have to be solved numerically. This is
called “Numerical Weather Prediction (NWP)” and is the basis of all weather forecasts provided
for the public in the media.

One limitation of these models is the spatial resolution necessary for solving the flow equati-
ons by numerical methods on powerful computers. Let us denote the resolution in the horizontal
plane (also called the grid-size) with ∆x, which means that all phenomena with horizontal ex-
tension L smaller than ∆x cannot be represented by the numerical model and can therefore
not be forecasted. In practice, atmospheric phenomena can be resolved by numerical weather
prediction models if they are larger than 4 times ∆x.

As a consequence of these restrictions, the following rules apply for atmospheric gravity
waves, including mountain waves: If the wavelength is L = 10 km, the resolution should be at
least ∆x = 2.5 km. If the wavelength is L = 40 km, a resolution of ∆x = 10 km is sufficient.
Hence, depending on the model available for the weather forecast, mountain waves may either
be resolved (and forecasted) or not. Some examples of wave forecasts obtained by these models
are given in the following sections.

8.2 Empirical methods

The basis for all wave forecasts is the knowledge of the vertical structure of the atmosphere
upstream of the mountain range of interest, including the vertical temperature profile for calcu-
lating the stability parameter (Brunt-Vaisala frequency) N , the wind speed profile of magnitude
U and the direction of the horizontal wind. From this information, we can calculate the Scorer
parameter S(z) = N(z)/U(z), which was explained in Section 6.1. Information about the ver-
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Fig. 8.1: Radiosonde observation at Bergen, Germany, for 14 November 2010, 12 UTC.
Source: University of Wyoming

tical structure of the atmospheric flow upstream of the mountain of interest can be obtained
by so-called radiosonde observations, or shortly called “temp”, which are provided through the
world wide observational network run by the local weather services, freely available from the
University of Wyoming at http://weather.uwyo.edu/upperair/sounding.html. An example
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Fig. 8.2: Vertical profiles of wind speed U , Brunt-Vaisala frequency N , Scorer parameter S and Scorer
lenght Ls for the radiosonde observations shown in Figure 8.1.
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of a sounding from the radiosonde station Bergen in Northern Germany is shown in Figure 8.1.
From these observations, profiles of Brunt-Vaisala frequency N and Scorer parameter S have
been derived and are shown in Figure 8.2.

Some rules of the thumb concerning the occurrence of mountain waves at a particular location
have been obtained through many observations and numerical simulations of mountain waves
and can be summarized as follows:

1. The atmosphere has to be stably stratified from at least the mountain top upward.

Reason: only in a stably stratified fluid can vertical oscillations and gravity waves develop.
A neutral or unstable stratification below the mountain top (e.g., day time convective
boundary layer) does not exclude gravity wave development above the inversion.

2. The approaching wind direction has to be within about ±30◦ deviation from the direction
perpendicular to the mountain ridge.

Reason: as mountains are only approximately two-dimensional, wind direction more par-
allel to the ridge leads to three-dimensional effects unfavorable for wave development.

3. The variation of wind direction with height should be less than ±20◦ from the wind
direction at mountain top.

Reason: a strong change in wind direction will damp out mountain waves.

4. The minimum wind speed at mountain top should be 15 - 25 kn (8 - 14m/s).

Reason: the lifting of air parcels in a stably stratified environment requires a minimum
wind speed, otherwise the air cannot flow over the mountain to trigger mountain waves.

5. For the variation of wind speed with height (wind shear), it has been found:

(a) vertically propagating (to high altitudes) mountain waves require a moderate increase
in wind speed with height (low wind shear),

(b) trapped mountain waves (lee waves) require a strong increase in wind speed with
height (strong wind shear).

6. Conditions (1) and (5) can be related to rules for the Scorer parameter S:

(a) vertically propagating mountain waves require S to be nearly constant with height,

(b) trapped mountain waves require S to decrease rapidly with height.

We may, as an example, consider the wind and temperature profiles provided in Figures 8.1 and
8.2. These are applied to mountain wave forecasts in Sections 8.3 - 8.5 as they meet all the simple
rules for mountain wave development. Trapped mountain waves (lee waves) can especially be
expected since the Scorer parameter decreases with height (rule 6b). As will be seen in Sections
8.3 - 8.5, trapped mountain waves indeed occurred over parts of Germany on this day.
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8.3 Linear wave models

If one wants to know not only whether mountain waves will occur, but in addition, the wave-
length, amplitude and vertical extension of mountain waves, one has to use a model based on the
physical laws for internal gravity waves as presented in the appendix. The most simplest case is
a linear model (see Appendix AI, AII) in which the waves do not interact with the approaching
flow. Some analytic solutions of the linear model equations were presented in Chapter 5 for very
simple configurations. If the mountain shapes and/or the vertical wind and temperature profiles
of the upwind atmospheric flow are more complicated, only numerical solutions are possible.
Such solutions are provided, e.g., in the monograph by Nappo (2012) and an example is given in
Figure 8.3. Here, the linear model has been applied to a real wave situation over the Thueringer
Wald (Thuringian Forest) in Germany for the upstream wind and temperature profiles given in
Figure 8.1 (Kubitschke, 2011).

In this case, the mountain is assumed to be two-dimensional in the crosswind direction,
which is of course very idealized. But with this simple approach, one can nonetheless forecast
wavelength and wave amplitude for mountain waves. A comparison between this linear model
prediction and more complex nonlinear models for the same situation can be found in Figures
8.4 and 8.8. More realistic linear wave models calculate the wave field in three dimensions and
include realistic topography of the mountainous terrain of interest. An example is the 3dVOM
(3 dimensional Winds Over Mountains) model run by the UK Met Office.

Fig. 8.3: Vertical velocity (colored) and streamlines (black) of mountain waves predicted with a linear
wave model for an idealized topography of the Thueringer Wald (Thuringian Forest) for the observed
radiosonde profiles shown in Figures 8.1 and 8.2
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Fig. 8.4: Vertical velocity at the 700 hPa (∼ 3 km) pressure level over the Harz/Thueringer Wald region
in Germany for 14 November 2010 as obtained with the RASP model.
Source: Hendrik Hoeth.

8.4 Nonlinear numerical models

Nonlinear atmospheric models make use of the full equations of fluid physics given in the appen-
dix. One such model is the well known RASP (Regional Atmospheric Soaring Prediction) model
developed by Dr. J.W. (Jack) Glendening (see: www.drjack.info/RASP), which is based on the
widely used WRF (Weather Research and Forecast) model. Although this model is mostly used
for predictions related to thermal flight, wave forecasts can also be performed as the horizontal
model resolution can be reduced to 1 - 4 km. The model is also run by various soaring-weather
enthusiasts throughout the world for their local soaring area. A list of these regional forecasts can
be found under www.drjack.info/RASP. One of these forecasts is provided by Hendrik Hoeth,
who runs the model for thermal flight and wave forecasts above the low mountain ranges of
Central Europe, especially Germany (see http://rasp.linta.de).

An example of a wave forecast with the RASP model for 14 November 2010 in Northern
Germany at a very high horizontal resolution of 1.4 km is shown in Figure 8.4. This is the same
situation as simulated with the COSMO-DE model described in Section 8.6. A vertical cross
section across the Thueringer Wald is shown in Figure 8.5, where the waves reach altitudes of
about 7 km, and has been verified by glider pilots as described in Section 8.6. This wave forecast
can also be compared with the results from the linear model provided in Figure 8.3.
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Fig. 8.5: Vertical cross section of vertical velocity along a line bisecting the Thueringer Wald (lower right
in Figure 8.4) as obtained by the RASP model.
Source: Hendrik Hoeth.

8.5 Operational weather prediction models

As already mentioned, the horizontal grid resolution for numerical weather prediction (NWP)
models has to be less than 4 km or so in order to capture atmospheric gravity waves with
wavelengths of less than 15 km. Until recently, very few regional NWP models had such low
resolution. One such model is the so-called COSMO-DE model run operationally for the area
of central Europe by the German Weather Service (DWD). From the routine forecasts, some
special model outputs for soaring flight are provided through the aviation tool PC_MET (see
www.flugwetter.de). Among these are the fields of vertical velocity for flight levels 50, 100
and 180 over central Europe. An example for 11 December 2010 is given in Figure 8.6 where a
large amplitude mountain wave is predicted in the lee of the Erzgebirge (Ore Mountains) with a
wavelength of about 24 km and wave updrafts of about 3m/s. Waves in other areas of Northern
Germany are also predicted on this day as can be seen in the figure. A verification of this wave
prediction can be made by comparing the satellite image for the same day as shown in Figure
8.7. Clearly, the strong wave event in the lee of the Erzgebirge can be identified in the lower right
part. Other wave systems can also be identified over Germany as predicted by the COSMO-DE
model.
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Fig. 8.6: Vertical velocity at flight level 100 (∼ 3 km) in the area of Erzgebirge, Germany, for 11 December
2010, 12 UTC, as obtained by the COSMO-DE model.
Source: German Weather Service (DWD).

Fig. 8.7: Satellite picture of wave clouds over Germany on 11 December 2010, 12 UTC. The lee waves
induced by the Erzgebirge (Ore Mountains) are seen along the path between Dresden and Prag (Prague).
Source: Wetteronline/Eumetsat.
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8.6 Verification of mountain wave forecasts

Verification of weather forecasts is something we more or less automatically do when we com-
pare the predicted with the actual weather. When the weather forecast promises sunshine for
tomorrow, but then it rains for several hours, we tend to regard this as a false forecast. The
verification of mountain wave forecasts is however not so simple. First, only a few people are
provided with these special forecasts and second, the verification itself is not trivial. One could
of course look at satellite images as shown in, e.g., Figure 8.7 or even to look to the sky to see
if we can detect cloud bands in the lee of mountain ridges. On many occasions though there are
no suitable clouds to be seen due to unsuitable atmospheric conditions so that the only way to
verify is to believe the forecast and to try and catch the waves with our sailplanes.

This is practiced by, among others, a group of soaring pilots in Northern Germany who are
provided with a mountain wave alert based on the forecast of the German Weather Service
(DWD). In response, they are asked to provide a flight report to the soaring community which
is then published on the website www.schwerewelle.de. In a thesis on mountain waves and
soaring flight, Kubitschke (2011) has evaluated one of these forecasts for the mountain areas
of Harz and the Thueringer Wald based on various flight reports. The wave prediction from
the COSMO-DE model for 14 November 2010 is shown in Figure 8.8. This prediction can also
be compared with the forecast of the RASP model for the same situation in Figure 8.4. The
wavelength is about 24 km for Harz and about 20 km for the Thueringer Wald corresponding
approximately with the Scorer length shown in Fig. 8.2, while wave updrafts have maxima of
2.5 - 3.0m/s.

As an example for the comparison with flight reports, the wave flights in the Harz area
performed on this day are shown in Figure 8.9. There, the field of vertical wind velocity provided
from the model is overlaid with the flight tracks. In total, 8 flight reports were available for this
day. From these reports (also published on the website mentioned above), the vertical wind
velocity in the waves was reported to be about 3m/s which is similar to the wave forecast shown
in Figure 8.8. While some pilots reached altitudes of more than 6000m MSL, higher flights were
not possible due to air traffic control restrictions. These reports also verify the vertical extent
of the mountain waves as predicted by the RASP model which can be seen in a cross section
above the Thueringer Wald provided in Figure 8.5.

In summary, it can be stated that mountain wave forecasts by operational weather prediction
models or by special soaring weather models like RASP are now possible. The reason for the
good performance, e.g., compared with forecasts of rain showers, is because mountain waves are
a (more or less) stationary atmospheric phenomenon fixed to the mountain range of interest.
Hence, when the vertical structure of the atmosphere is favorable for wave development (see the
rules in Section 8.2), it is likely that mountain waves will occur. As current weather forecast
models include the physics of atmospheric gravity wave development, these waves should show
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up in the forecast automatically, provided the horizontal grid resolution is fine enough (say below
4 km). It is more a problem of providing the wave forecast to the customers (glider pilots), as
the model output requires specific processing.

Fig. 8.8: Vertical velocity at flight level 100 (∼ 3 km) for day 14 November 2010, 14 UTC, in the area
Harz/Thueringer Wald as obtained by the COSMO-DE model.
Source: German Weather Service (DWD).

Fig. 8.9: Composite of mountain wave prediction (from Figure 8.8) and flight tracks reported by glider
pilots in the lee of Harz for 14 November 2010. Flight track colors: orange: climbing, blue: descending.
Source: Kubitschke (2011).
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9 Rotors

9.1 General aspects

A paper on mountain waves and soaring flight is not complete without a section on rotors. As
already indicated in Figures 1.3 and 7.8, rotors can be found in the layer between the earth’s
surface and the first mountain wave crests. As the name “rotor” indicates, the airflow within
a rotor is not consistently directed downstream, but can have surface winds opposing the flow
approaching the mountain as shown schematically in Figure 9.1. It is not the reversed flow
that is the main problem for gliders or any aviation vehicle, but rather the strong turbulence
encountered in the upper part of the rotor which makes flight within the rotor dangerous. The
strong turbulence can be accompanied by cumulus clouds at the rotor top in contrast to the
smooth lenticularis clouds found at the wave crests at higher altitudes. An example of a rotor
cloud is shown in Figure 9.2. In fact, glider pilots have traditionally used the rotor cloud as an
indicator of the rotor location.

As rotor turbulence is not only dangerous for soaring flight but also for general aviation,
several large field experiments have been performed in the last 50 years. Figure 9.1 shows the
setup for the recent Terrain-induced Rotor Experiment (T-REX), which took place in 2006 in
the Owens valley at the flanks of the Sierra Nevada in the USA (see Grubisic et al., 2008). This
area was also used for the first large field experiment on mountain waves and rotors performed in
1955 named the Sierra Wave Project (see Grubisic and Lewis (2004) for a retrospect). The flanks
of the Sierra Nevada are well known for inducing large amplitude mountain waves which can
reach into the lower Stratosphere (12 - 15 km) so that during the 1955 field experiment, glider
pilots were able to climb up to 13 km altitude by using the mountain wave lift. The wave system
induced by moderately sized mountains is also usually accompanied by rotors in the lower layer
as indicated in Figures 1.3 and 7.8. Some rotor observations behind a small mountain ridge on
the Falkland Islands are described in Mobbs et al. (2005).

Fig. 9.1: Schematic of the setup for the T-REX
field experiment in the Owens Valley, Sierra Neva-
da. Shown are streamlines of the mountain waves
and the anticipated location and size of the rotor.
Source: EOL NCAR.
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Fig. 9.2: Rotor clouds in the
lee of Mount Mitchell, North
Carolina.
Photograph by Malosse, pos-
ted at Wikimedia Commons.

9.2 Rotor structure

Despite the field experiments mentioned in Section 9.1, most information about the velocity
field within mountain induced rotors have been obtained from numerical simulations in recent
years (see, e.g., Dale and Durran, 2002; Vosper, 2004). It has been found that an elevated
temperature inversion as sketched in Figure 9.3 is favorable for rotor formation. Instead of
presenting results from numerical simulations, we will show the typical rotor structure obtained
by recent laboratory experiments that towed a mountain-shaped obstacle through a stratified
water tank (Knigge et al. 2010; Knigge 2012). The setup was quite similar as the one used for
numerical simulations shown in Figure 9.3. The rotor flow was visualized by particles submerged
in the fluid as shown in Figure 9.4. The inversion is marked by streaks with dense particle
concentration and the mountain wave is seen above the inversion. The rotor itself is indicated
by the irregular particle paths due to rotor turbulence below the first wave crest. The resulting
streamlines and the velocity field obtained from particle motion by means of PIV (Particle Image
Velocimetry) are shown in Figure 9.5.

x

z

H

L

Θ

∆Θ

U

zi

Fig. 9.3: temperature and wind con-
ditions favorable for rotor formation
in the lee of isolated mountains. The
height of the temperature inversion
∆Θ is denoted by zi. These types of
idealized profiles for wind speed U

and potential temperature Θ have be-
en used for numerical simulations and
laboratory experiments of rotors.
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Fig. 9.4: Streaklines of wave and rotor in the lee of a mountain-shaped obstacle towed through a stratified
fluid. The rotor is indicated by irregular streaks below the wave-like inversion layer.
From Knigge (2012).

Fig. 9.5: Streamlines (black) and the velocity field (colored) for the rotor case shown in Figure 9.4 as
obtained by PIV methods. Distances are normalized by the obstacle height H. Velocity is normalized by
the undisturbed flow velocity U .
From Knigge (2012).
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9.3 Rotor formation

In contrast to the physics of gravity waves, which has been understood in principle for 80 years
or so, the formation of rotors is still a subject of investigation. Aside from field work like the
large T-REX campaign mentioned in Section 9.1, most research on rotor physics has been done
by numerical simulations (see the references in Section 9.2). The reason for the relatively slow
progress in rotor research is that gravity wave research has been aided by linear theory, which
allows analytical solutions for simple cases (see Section 5). The rotor however is a non-linear
phenomenon also including turbulence which is a complex and difficult fluid problem in its own
right. In order to give some impression of the underlying rotor physics, we mention two basic
conditions for rotor formation as found by recent research aided by numerical simulations:

1. The reversed flow in the lower part of the rotor is induced by an adverse pressure gradient
imposed by the lee wave system above the rotor.

2. Friction in the atmospheric boundary layer reduces the wind speed of the approaching
flow near the ground and hence favours the development of a wind component flowing
back toward the mountain in the direction of the wave-induced pressure gradient.

The first condition is illustrated schematically in Figure 9.6. The lee waves induce periodic pres-
sure variations ∆p in the boundary layer with amplitudes of about 10Pa (or 0.1mb). Under
the wave crests, one finds increased pressure (denoted by + in Fig. 9.6) and under the troughs,
decreased pressure (−). The direction of the pressure gradients in the rotor layer are also indi-
cated. The adverse pressure gradient is directed toward the mountain and hence opposing the
approaching flow. This does not necessarily mean that the wind speed in the rotor near the
ground is also directed toward the mountain, but that it is reduced with respect to its value in

∆p+++
− − −

x

Fig. 9.6: Schematic of near surface pressure variations ∆p as observed below mountain lee waves. Typical
pressure amplitudes are about ∆p ≈ 10Pa. The direction of adverse pressure gradients favorable for rotor
formation are indicated by arrows.
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Fig. 9.7: Typical profiles of horizontal wind speed U as function of height z in the undisturbed boundary
layer approach flow (left) and in the middle of a rotor (right). The vertical coordinate is normalized by
the mountain height H, wind speed is normalized by the velocity U0 above the mountain height. Wind
profiles are based on field measurements and numerical simulations of rotors.

the approaching flow. As shown in Fig. 9.7, the wind speed in the approaching flow decreases
near the ground due to frictional forces. If the wave-induced adverse pressure gradient is strong
enough, the velocity induced by this force can exceed the wind speed of the approach flow re-
sulting in a net flow backward to the mountain as is shown in Fig. 9.7 and happens in the fully
developed rotor illustrated in Fig. 9.8.

This simple explanation for the rotor development underneath mountain lee waves is quite
similar to the phenomena of boundary layer separation from airfoils leading to stall. In the latter,
an adverse pressure gradient is induced by dynamic pressure differences over the wing system
following Bernoulli’s equation (see discussion in Section 2.5), a well known phenomenon in the
field of aviation.
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Fig. 9.8: Typical size of the rotor behind a mountain of moderate height (H ≈ 1 km). Typical horizontal
and vertical wind speeds (in m/s) are indicated by arrows. Note that the scale of the vertical coordinate
z is enlarged compared with the horizontal coordinate x.
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The typical vortex size and wind velocities in rotors behind mountain ridges of moderate
height (H ≈ 1 km) are given in Fig. 9.8. The vertical extension of the rotor is of the order of the
mountain height H, the horizontal size is about 6H. Hence, the rotor is not a circular vortex
but has more an elliptical shape (sketches of circular rotors are usually due to different scales
of vertical and horizontal distances in rotor pictures found in publications). Typical vertical
velocities are ± 3m/s for moderate rotors as has been experienced by many glider pilots when
entering the wave system through the rotor updrafts. As the rotor velocities also depend on the
height of the mountain and on the strength of the approaching flow, vertical lift of the order of
10m/s has been also observed in the rotor systems of large mountain areas like the Andes or
the Sierra Nevada.
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10 Travelling gravity waves

10.1 Introduction

We have focused our discussion above on mountain or lee waves as these waves are more or
less stationary gravity waves induced by small and large mountains, the locations of which are
known. If the stratification and wind speed remain nearly constant for hours, glider pilots will
find lift areas over a suitably long period and hence mountain waves are most suitable for wave
soaring.

In Section 5.4, it was pointed out that stationary gravity waves can be found if the phase
speed of the waves are of equal magnitude, but of opposite direction to the approaching air flow
(see Fig. 5.9). If this is not the case, the waves can move with or against the wind depending on
their phase speed (denoted by c). As a rule of thumb, this phase speed is given by the relation
c = NL/2π, where N is the Brunt-Vaisala frequency and L is the wavelength. Let us take, for
example, the situation in the ICAO standard atmosphere, where N = 0.011 1/s (see Table 3.1 in
Section 3.5). If we take L = 10 km, the phase speed will be c = 16m/s (about 30 kn) and must
be added to or subtracted from the wind speed depending on the wave direction to obtain the
absolute wave speed with respect to a stationary observer on the ground.

In fact, gravity waves can be found nearly everywhere in the atmosphere, even over the
oceans. All that is required is a source to trigger vertical excursions of air parcels which need
not be the upslope or downslope ridge of mountains. We have already indicated the possibility
of gravity wave launching by thermals impinging on the inversion at the top of the convective
boundary layer during daytime conditions in Section 5.5 and these so-called thermal waves are
discussed in the next section. More exotic gravity waves as lift sources for soaring flight are
solitary waves which will be presented in Section 10.3.

10.2 Thermal waves

Thermal waves, also called convection waves, occur in the stably stratified atmosphere above a
convective boundary layer. They have been explored by glider pilots like H. Jaekisch or C. Lin-
demann only since the 1970s, more or less accidentally (see Kuettner et al. (1987) for references).
Early scientific investigations of these waves were performed by Kuettner et al. (1987) using re-
search aircraft and radiosonde observations. Complementary model simulations were performed
by Hauf and Clark (1989). The principle behind the triggering of thermal waves was indicated
in Fig. 5.10 (Section 5.5). Thermals in the convective lower layer of the atmosphere, which are,
e.g., used for thermal flight, impinge on the inversion capping this layer. If the atmosphere is
stably stratified above the convective layer, which is mostly the case, the undulating inversion
acts like a wave maker in a wave pool. The observations suggested however that there must also
be an additional increase of wind speed with height of at least 3m/s per 1000m throughout
the inversion layer in order for convection waves to be formed. The meteorological situation
favorable for thermal waves is similar to the case for rotor formation shown in Fig. 9.3, except
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that there are no mountains involved. A schematic of boundary layer clouds triggering thermal
waves above an inversion layer is given in Fig. 10.1.

If the thermals (or Cumulus clouds in moist boundary layers) are distributed more or less
randomly, the gravity waves triggered above the inversion will not be as regular as in the case of
mountain waves (Hauf and Clark, 1989). Exceptions are so-called cloud streets in the convective
layer, where Cumulus clouds are more or less organized in cloud rows oriented in the wind
direction. These cloud streets have long been used by sailplane pilots for long distance soaring
under thermal conditions. If there is not only an increase of wind speed with height, but also
a strong change in wind direction above the inversion, gravity waves above can be organized
parallel to the cloud streets below. But this case seems to be rare, as a strong change in wind
direction only occurs under special meteorological conditions.

In contrast to mountain waves, thermal waves are difficult to predict and hence can be
soared only more or less accidentally. Thermal waves are also only occasionally made visible
by Lenticularis clouds, because the atmosphere above a strong inversion layer often contains
insufficient moisture for cloud formation making visual identification of wave crests and hence lift
areas difficult. Nevertheless, soaring thermal waves above Cumulus clouds have been experienced
by many glider pilots. The techniques for entering and soaring these waves are described in, e.g.,
Hertenstein (2005) or Eckey (2012).

x

z (km)

1

2
Wind

Fig. 10.1: Schematic of gravity waves (called thermal waves or convection waves) triggered by Cumulus
clouds impinging on the capping inversion (shaded area) of a convective boundary layer. The necessary
wind shear for wave formation is shown in the wind profile. Areas with upward lift for entering the wave
are indicated by arrows.
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10.3 Solitary waves

Solitary waves, also called undular bores, are perhaps the most exotic gravity waves used for
soaring flight. In contrast to other gravity waves which usually are found throughout the tro-
posphere, solitary wave are restricted to the lowest 1 - 3 km of the atmosphere. From a satellite
perspective (Figure 10.2), they look like mountain lee waves, but in reality are not stationary as
they move with typical speeds of about 30 - 50 km/h horizontally. The clouds produced by the
updrafts of these waves look like those in Figure 10.2 showing a roll-like shape with horizontal
extensions up to several hundreds of kilometres, where an airborne perspective and a surface
view are shown in Fig. 10.3. These kinds of gravity wave occur at several places in the world,
but most regularly (and to some degree predictable for soaring flight) in Northern Australia in
the Gulf of Carpentaria (see Fig. 10.2), where they are called “Morning Glory”. For references
to this phenomenon, see, e.g., review articles by Christie (1992) or Smith (1988). With respect
to soaring flight, the Morning Glory is treated in Eckey (2012) and Martinez (2012), where also
many impressive photographs of the wave clouds are shown.

A sketch of the typical wave system of a Morning Glory (and other solitary waves) is shown in
Figure 10.4. The wave front is moving at about 40 km/h in the horizontal and the vertical wind
speed in front of the wave cloud can reach 2 - 4m/s. This is comparable to wave lift in mountain
lee waves, except that the lift areas are moving in the horizontal. The typical wavelength is about

Fig. 10.2: Atmospheric solitary waves in the Gulf of Carpentaria, Northern Australia, made visible by
cloud lines, as observed from a satellite. The waves are moving in the direction perpendicular to the first
wave crests as indicated by cloud lines. The wavelength as measured by the distance between cloud lines
is about 10 km. In this area, these waves are called the “Morning Glory”.
Source: NASA Modis Rapid Response Team.
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Fig. 10.3: The cloud rolls of the Morning Glory as observed over Northern Queensland from the ground
(left) and from an airplane (right).
Photographs by Roger Smith.
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Fig. 10.4: Schematic cross section through an atmospheric solitary wave (like that shown in Fig. 10.2).
The wavy outline indicates the gravity current moving into a stably stratified boundary layer. Typical
velocities and spatial dimensions for these kinds of gravity wave are also provided.

6 - 12 km and the wave amplitude can reach 500m. Soaring these solitary waves is analogous to
wave surfing on ocean beaches, where the surfers are not just moving forward with the wave front
but also sideways or parallel to the advancing wave crest. Although the Morning Glory wave in
Australia has been known for a long time due its impressive cloud formation, it has only been
used as a source of lift for soaring flight since 1989, starting with R. Thomson and R. White.
Since then, the Morning Glory has been flown by sailplanes and powered gliders regularly, based
mostly at Burketown in Northern Queensland, Australia (for more information, see the websites:
www.morninggloryaustralia.com and www.morningglorycloud.com).

The physical origin of solitary gravity waves like the Morning Glory is not easily explained. In
fact, these kinds of wave have kept theoreticians busy the last hundred years or so (see the recent
collection by Grimshaw (2007) for details). Although several mechanisms have been discussed for
the formation of the “Morning Glory” (see Christie, 1992 or Smith, 1988), the principle scenario
seems to be the intrusion of a gravity current into a stably stratified atmospheric boundary layer
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(the gravity current is indicated in Fig. 10.4). A gravity current, also called a density current,
is a flow phenomenon which is formed when fluid layers of different densities are separated in
the horizontal direction. A simple everyday example for a gravity current is if we spill some
water on the kitchen floor, it will move sideways from its spill location. The reason is that the
layer of water is much more dense than the surrounding air layer. According to the hydrostatic
pressure law (see Section 2.4), the surface pressure in the water layer will be larger than the
pressure in the surrounding air layer. Hence, there will be a horizontal pressure gradient which
will accelerate the water into the direction of the surrounding air layer. The motion of the spilled
water is one type of a gravity current, where the name gravity current stems from the fact that
the hydrostatic pressure difference driving the current is induced by the gravity force.

Gravity currents can be found in many situations in environmental fluids (see Simpson (1997)
for a collection). Examples include the sea breeze at coastal areas or the cold air outflows from
thunderstorms impinging on the ground. Under special conditions concerning the propagation
speed of the gravity current with respect to the surrounding wind speed, waves can be excited at
the top of the gravity current (see Fig. 10.4) that extend over a limited distance into the stably
stratified air layer above. For Morning Glory waves in Australia, these are mainly induced by
colliding sea breeze fronts in the area of Cape York peninsula. In other areas of the world away
from the coast, solitary waves may be induced by thunderstorm outflows travelling along the
ground into a stably stratified boundary layer.





11 A short history of mountain wave soaring 105

11 A short history of mountain wave soaring

The scientific research of mountain waves was very much connected with wave soaring in the early
days of wave flight as described in the excellent monographs by Whelan (2000) and Martinez
(2012) and so here we give only a short overview on the development of wave research and wave
soaring. The first wave flight was performed by H. Deutschmann and W. Hirth in 1933 in the
lee of the Riesengebirge Mountains in Central Europe. During these flights, Hirth also detected
the rotors underneath the wave crests. His turbulent voyage through the rotor is described quite
vividly in Whelan (2000). Following this event, the first systematic investigation of the mountain
wave system of the Riesengebirge Mountains was performed by several glider pilots in 1937. The
flight data were analysed by J. Kuettner (1939) and provided the first schematic of the lee wave
system. His original map of the wave system is shown in Figure 11.1 and his pictures of the rotor
system underneath the wave crests is shown in Figure 11.2.

From these early days of wave flight, glider pilots have used the mountain wave system for

Fig. 11.1: Areas of upward (+) and downward (−) air motion in the lee of the Riesengebirge Mountains
as derived from flight reports of various soaring flights on May 21, 1937. The wavelength of gravity waves
as induced by the ridge of the Riesengebirge can be estimated from this map as 7 - 8 km.
From Kuettner (1939).
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Fig. 11.2: Various interpreta-
tions of the flow above the Rie-
sengebirge Mountains for the
situation shown in Fig. 11.1.
Schematic III including the lee
waves and the rotors under-
neath was first proposed by
Kuettner.
From Kuettner (1939).

extending their flights continuously with respect to distance and altitude. Kuettner was already
able to soar up to 8 km altitude in the Riesengebirge wave. As early as 1940, the first flight by
a sail plane to the edge of the stratosphere was conducted by E. Kloeckner, who reached the
altitude of 11400m above the European Alps. In the following years, other places in the world
have been detected for wave soaring as described in, e.g., Queney et al. (1960). Here we mention
only the Pennines in the UK (Manley, 1945) or the southern French Alps (Berenger and Gerbier,
1960). Later famous wave spots were found in the Sierra Nevada, USA (Whelan, 2000) and in
the Southern Alps of New Zealand (Delore and Dew, 2005). The development of wave soaring
in Canada is described in Wiese (1997).

In the years 1950 - 1955, mountain waves were subject to large field experiments named the
Sierra Wave Experiment and the Jet Stream Experiment. A recent scientific retrospect of these
experiments is given by Lewis and Grubisic (2004) and some of the wave flights performed with
sailplanes during these field studies are described in Whelan (2000). Both field experiments took
place above the Owens Valley at the flanks of the Sierra Nevada as this location was known
for large amplitude mountain waves and strong rotors. Indeed, on one day a large amplitude
mountain wave developed which kept a P38 powered aircraft aloft after its engines were shut
down. The photograph of the enormous rotor cloud underneath the wave crest, as taken by the
pilot B. Symons, has been the most published picture of a rotor (see, e.g., Whelan, 2000 and
Martinez, 2012).

Very high altitudes up to 13 km have also been reached by sailplanes during these field
experiments. Among them were flights by L. Edgar, K.E. Klieforth, J. Kuettner, B. Symons and
B. Woodward. The wave system of the Sierra Nevada has been used since then by various pilots
to challenge the altitude record for sailplanes. We mention only the last attempt by B. Harris,
who placed the world record in 1986 at 14980m. This was only broken in 2002 by S. Fosset
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and E. Enevoldson in the lee of the Andes wave system with an altitude of 15440m. In fact,
besides the Southern Alps of New Zealand, the Andes have also become the place for chasing
long distance records for soaring flight in recent years (see, e.g., Delore and Dew, 2005). The lee
wave system of the Andes allows quite remarkable flights like the world record over 3009 km (a
return flight from Chapleco, Argentinia) achieved by K. Ohlmann in 2003 or the record for a one
way flight of over 2133 km (Kuettner Prize) flown by the same pilot in 2003 from El Calafate to
San Juan in Argentinia (see Martinez (2012) or the website www.mountain-wave-project.com).

Despite these extraordinary flights performed in mountain wave systems, one should not
forget that hundreds of glider pilots have performed successful wave flights since the early be-
ginnings in 1933 using gravity wave systems triggered by large and small mountains nearby their
home base. This kind of lift source for soaring flight will become even more attractive due to
the advancement of knowledge of mountain wave physics and advances in forecasting mountain
waves with recent numerical weather prediction models run by various national weather services
as described in Section 8.
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Appendix

The appendix is intended to give some more information on the formal treatment of internal
gravity waves by means of physical equations and their mathematical formulation. Here we
follow the usual notation of differences by using the symbol “∂” instead of “d” as used in the
text for simplicity.

AI. The linear forms of the basic equations

In the following, we consider gravity waves as purely two-dimensional phenomena in the x - z
coordinate plain. Hence, there are no variations in the second horizontal coordinate y in the
direction parallel to the wave crests.

A basic state of the stratified atmosphere is defined with variables depending only on the
vertical coordinate z:

U(z) horizontal wind speed,

Θ(z) potential temperature,

P (z) pressure.

Gravity waves are defined as small departures u, θ and p from this basic state as follows:

Ut(x, z, t) = U(z) + u(x, z, t),

Θt(x, z, t) = Θ(z) + θ(x, z, t),

Pt(x, z, t) = P (z) + p(x, z, t),

where Ut, Θt and Pt denote the total (basic state + wave) wind, temperature and pressure fields,
respectively.

The linearized equations mean that the wave quantities u, w, θ and p do not change the
basic state U(z), Θ(z) and P (z). This concept is valid only for small perturbations;

p� P, u� U, θ � Θ.

For example, if the basic wind speed U is about 10 m/s, then the wind perturbation u induced
by the waves should be about 1 m/s. As no mean vertical velocity exists in the basic state
(W = 0), only perturbations w(x, z, t) due to waves have to be considered.

The set of linearized equations for the formal description of wave motion is given below:

Momentum equation (equations of motion)
∂u

∂t
+ U

∂u

∂x
+ w

∂U

∂z
= − 1

ρ0

∂p

∂x
(A.1)

∂w

∂t
+ U

∂w

∂x
= − 1

ρ0

∂p

∂z
+ g

Θ0
θ (A.2)

Here, Θ0 and ρ0 are some typical constant values for temperature and density.
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Heat equation (equation for potential temperature)
∂θ

∂t
+ U

∂θ

∂x
+ w

∂Θ
∂z

= 0 (A.3)

With the definition of buoyancy
b = g

Θ0
θ,

this equation can be also written as
∂b

∂t
+ U

∂b

∂x
+ wN2 = 0. (A.4)

Here, N is the Brunt-Vaisala frequency

N =

√
g

θ

dθ

dz

.

Continuity equation
∂u

∂x
+ ∂w

∂z
= 0 (A.5)

In equations A.1 – A.4, the first terms on the left hand side describe the temporal variations
of wave properties u, w, θ or b. The second terms describe the advection (transport) of wave
properties with the mean wind U and the third terms the advection (transport) of the mean
wind U and temperature Θ by the vertical wave velocity w. In equations A.1 and A.2, the first
terms on the right hand side (r.h.s) are the horizontal and vertical pressure forces, in A.2 the
second term on the r.h.s is the buoyancy force.

AII. Wave equations

In order to find some analytic solutions for the equations A.1 – A.4, a so-called wave-ansatz is
made for the variables u, w, p, and θ. For example, this is given for the vertical velocity w as

w(x, z, t) = w0(z) sin(kx− ωt),

where k = 2π/L is the wave number and ω = 2π/τ is the frequency (L = wavelength, τ =
oscillation period). The wave amplitude w0(z) has to be determined as a solution of the wave
equations (see below) for a given combination of k and ω.

In seeking wave solutions to equations A.1 – A.4, it is usual practice to derive a single
equation for the vertical velocity w(x, z, t) from these equations. This is given for two special
cases below.

(a) no background wind: U(z) = 0

∂2

∂t2

(
∂2w

∂x2 + ∂2w

∂z2

)
+N2∂

2w

∂x2 = 0 (A.6)

The solutions of this wave equation are travelling gravity waves as discussed in Sections 5.1 –
5.3.
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(b) stationary waves (∂F/∂t = 0, F = u, w, p, θ)

∂2w

∂x2 + ∂2w

∂z2 +
(
N

U

)2
w = 0 (A.7)

This is a simplified version where the curvature of the wind profile U(z) has been neglected. The
term N2/U2 is just the square of the Scorer parameter S introduced in Section 6.1.

The solutions of this wave equation are stationary gravity waves, especially mountain waves,
which are discussed in Chapters 6 and 7.

AIII. Mathematical functions for the description of waves

Periodic functions

In Section 4.1, waves were defined as the periodic repetition of fluid properties (temperature,
pressure, velocity) in space. The most simple formal description of waves can be given by means
of sine or cosine functions. Here, we give some illustrations of these mathematical functions
which will be named sin(ϕ) and cos(ϕ), where the argument ϕ is the Greek letter phi.

Fs(ϕ) = sin(nϕ), ϕ = 0 - 2π, n = 1, 2, 3, ...

Fc(ϕ) = cos(nϕ), ϕ = 0 - 2π, n = 1, 2, 3, ...

where π is the Greek letter pi with π = 3.14. The sine and cosine functions repeat themselves
with the period 2π, hence sin(0) = sin(2π) = sin(4π) etc as is shown in Figures A.3 and A.4.
The values of sin and cos are between −1 and +1 as is also shown in Fig. A.3.
Waves in real fluids are described by spatial and temporal variations. As the argument ϕ in
the sine and cosine functions has to be a non-dimensional number, one has to introduce a
wavelength L or wave period T to make the length x or the time t also non-dimensional. Waves
and oscillations can then be formally described by:

Fs

(
x

L

)
= sin

(2πx
L

)
, Fs

(
t

T

)
= sin

(2πt
T

)
,

Fc

(
x

L

)
= cos

(2πx
L

)
, Fc

(
t

T

)
= cos

(2πt
T

)
.

0 1
2π π 3

2π 2π
ϕ

0 1
4

1
2

3
4 1

x
L , t

T

1

−1
Fig. A.3: Functions sin(ϕ), solid li-
ne, and cos(ϕ), dashed line, for spatial
(x/L) or temporal (t/T ) coordinates
for one wavelength L or one wave peri-
od T . Here, ϕ = 2πx/L or ϕ = 2πt/T .
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Fig. A.4: Examples of sine and cosine functions over 3 wavelengths or wave periods. Definitions are as
in Fig. A.3.

These functions are displayed in Figures A.3 and A.4.

Waves as observed in the atmosphere or in the oceans can only in rare circumstances be des-
cribed by a simple sine wave with one specific wavelength L (this case is called a monochromatic
wave). In practice, waves are a superposition of several waves with different wavelengths (and
amplitudes). The sine and cosine functions given above can then still be used for a formal wave
description, one only has to sum up several of these functions with different wavelength L. The
final result may provide a much more complicated wave structure than a monochromatic wave
(see, e.g., the picture of water surface waves in Fig. 4.3).

Exponential function

Waves in the atmosphere do not extend infinitely in space but are limited to some horizontal
or vertical distance and have a limited life time. This decay in space or time will modify the
periodic wave behaviour as described by the sine and cosine functions above. Nearly all decay
laws in physics can be described formally by the so-called exponential function exp or e:

Fe(ϕ) = exp(−ϕ) = e(−ϕ), ϕ = 0 ... any number.

For ϕ = −1, Fe(ϕ) = e, with e defined as the real positive number e = 2.71. The exponential
function is displayed in Fig. A.5, where Fe(ϕ) = 1 for ϕ = 0 and decays rapidly with increasing
ϕ. Already for ϕ = 3 we have e(−3) = 0.05, hence the exponential function has decayed to about
5% of its initial value.

If the exponential function is to be applied to waves and oscillations, one has to introduce a
typical decay length L and a typical decay time T in order to obtain non-dimensional arguments
(like the wavelength and wave periods for periodic functions sine and cosine). The exponential
function can then be written as
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Fig. A.5: The exponential decay function
exp(−ϕ) or e−ϕ with ϕ = z/L or ϕ = t/T .
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Fig. A.6: The exponential decay function
exp(−z/L) for different values of the de-
cay length L. L = 1 km: solid, L = 2 km:
dashed. L = 4 km: dotted.

Fe

(
z

L

)
= exp

(
− z
L

)
= e(−z/L),

where we have taken the vertical coordinate z as an example for spatial variations.

For temporal decay we obtain:

Fe

(
t

T

)
= exp

(
− t

T

)
= e(−t/T ).

These functions are also displayed in Fig. A.5. In Fig. A.6, we give some practical examples for
the decay of wave amplitudes in the atmosphere for different decay length scales L.
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